1,121 research outputs found

    Integrable Structure of Interface Dynamics

    Full text link
    We establish the equivalence of a 2D contour dynamics to the dispersionless limit of the integrable Toda hierarchy constrained by a string equation. Remarkably, the same hierarchy underlies 2D quantum gravity.Comment: 5 pages, no figures, submitted to Phys. Rev. Lett, typos correcte

    Ultracold collisions of oxygen molecules

    Full text link
    Collision cross sections and rate constants between two ground- state oxygen molecules are investigated theoretically at translational energies below āˆ¼1\sim 1K and in zero magnetic field. We present calculations for elastic and spin- changing inelastic collision rates for different isotopic combinations of oxygen atoms as a prelude to understanding their collisional stability in ultracold magnetic traps. A numerical analysis has been made in the framework of a rigid- rotor model that accounts fully for the singlet, triplet, and quintet potential energy surfaces in this system. The results offer insights into the effectiveness of evaporative cooling and the properties of molecular Bose- Einstein condensates, as well as estimates of collisional lifetimes in magnetic traps. Specifically, 17O2^{17}O_{2} looks like a good candidate for ultracold studies, while 16O2^{16}O_{2} is unlikely to survive evaporative cooling. Since 17O2^{17}O_{2} is representative of a wide class of molecules that are paramagnetic in their ground state we conclude that many molecules can be successfully magnetically trapped at ultralow temperatures.Comment: 15 pages, 9 figure

    Distinguishing Among Strong Decay Models

    Get PDF
    Two competing models for strong hadronic decays, the 3P0^3P_0 and 3S1^3S_1 models, are currently in use. Attempts to rule out one or the other have been hindered by a poor understanding of final state interactions and by ambiguities in the treatment of relativistic effects. In this article we study meson decays in both models, focussing on certain amplitude ratios for which the relativistic uncertainties largely cancel out (notably the S/DS/D ratios in b1ā†’Ļ€Ļ‰b_1\rightarrow\pi\omega and a1ā†’Ļ€Ļa_1\rightarrow\pi\rho), and using a Quark Born Formalism to estimate the final state interactions. We find that the 3P0^3P_0 model is strongly favoured. In addition, we predict a P/FP/F amplitude ratio of 1.6Ā±.21.6\pm .2 for the decay Ļ€2ā†’Ļ€Ļ\pi_2\rightarrow\pi\rho. We also study the parameter-dependence of some individual amplitudes (as opposed to amplitude ratios), in an attempt to identify a ``best'' version of the 3P0^3P_0 model.Comment: 20 pages, uuencoded postscript file with 7 figures, MIT-CTP-2295; CMU-HEP94-1

    Molecular Dynamics Simulation of Sympathetic Crystallization of Molecular Ions

    Full text link
    It is shown that the translational degrees of freedom of a large variety of molecules, from light diatomic to heavy organic ones, can be cooled sympathetically and brought to rest (crystallized) in a linear Paul trap. The method relies on endowing the molecules with an appropriate positive charge, storage in a linear radiofrequency trap, and sympathetic cooling. Two well--known atomic coolant species, 9Be+{}^9{\hbox{Be}}^+ and 137Ba+{}^{137}{\hbox{Ba}}^+, are sufficient for cooling the molecular mass range from 2 to 20,000 amu. The large molecular charge required for simultaneous trapping of heavy molecules and of the coolant ions can easily be produced using electrospray ionization. Crystallized molecular ions offer vast opportunities for novel studies.Comment: Accepted for publication in Phys. Rev.

    Multiplexing siRNAs to compress RNAi-based screen size in human cells

    Get PDF
    Here we describe a novel strategy using multiplexes of synthetic small interfering RNAs (siRNAs) corresponding to multiple gene targets in order to compress RNA interference (RNAi) screen size. Before investigating the practical use of this strategy, we first characterized the gene-specific RNAi induced by a large subset (258 siRNAs, 129 genes) of the entire siRNA library used in this study (āˆ¼800 siRNAs, āˆ¼400 genes). We next demonstrated that multiplexed siRNAs could silence at least six genes to the same degree as when the genes were targeted individually. The entire library was then used in a screen in which randomly multiplexed siRNAs were assayed for their affect on cell viability. Using this strategy, several gene targets that influenced the viability of a breast cancer cell line were identified. This study suggests that the screening of randomly multiplexed siRNAs may provide an important avenue towards the identification of candidate gene targets for downstream functional analyses and may also be useful for the rapid identification of positive controls for use in novel assay systems. This approach is likely to be especially applicable where assay costs or platform limitations are prohibitive

    HIV Cure Strategies: How Good Must They Be to Improve on Current Antiretroviral Therapy?

    Get PDF
    Background: We examined efficacy, toxicity, relapse, cost, and quality-of-life thresholds of hypothetical HIV cure interventions that would make them cost-effective compared to life-long antiretroviral therapy (ART). Methods: We used a computer simulation model to assess three HIV cure strategies: Gene Therapy, Chemotherapy, and Stem Cell Transplantation (SCT), each compared to ART. Efficacy and cost parameters were varied widely in sensitivity analysis. Outcomes included quality-adjusted life expectancy, lifetime cost, and cost-effectiveness in dollars/quality-adjusted life year (/QALY)gained.Strategiesweredeemedcostāˆ’effectivewithincrementalcostāˆ’effectivenessratios</QALY) gained. Strategies were deemed cost-effective with incremental cost-effectiveness ratios <100,000/QALY. Results: For patients on ART, discounted quality-adjusted life expectancy was 16.4 years and lifetime costs were 591,400.GeneTherapywascostāˆ’effectivewithefficacyof10591,400. Gene Therapy was cost-effective with efficacy of 10%, relapse rate 0.5%/month, and cost 54,000. Chemotherapy was cost-effective with efficacy of 88%, relapse rate 0.5%/month, and cost 12,400/monthfor24months.At12,400/month for 24 months. At 150,000/procedure, SCT was cost-effective with efficacy of 79% and relapse rate 0.5%/month. Moderate efficacy increases and cost reductions made Gene Therapy cost-saving, but substantial efficacy/cost changes were needed to make Chemotherapy or SCT cost-saving. Conclusions: Depending on efficacy, relapse rate, and cost, cure strategies could be cost-effective compared to current ART and potentially cost-saving. These results may help provide performance targets for developing cure strategies for HIV
    • ā€¦
    corecore