19 research outputs found

    Identification of Channel-lining Amino Acid Residues in the Hydrophobic Segment of Colicin Ia

    Get PDF
    Colicin Ia is a bactericidal protein of 626 amino acid residues that kills its target cell by forming a channel in the inner membrane; it can also form voltage-dependent channels in planar lipid bilayer membranes. The channel-forming activity resides in the carboxy-terminal domain of ∼177 residues. In the crystal structure of the water-soluble conformation, this domain consists of a bundle of 10 α-helices, with eight mostly amphipathic helices surrounding a hydrophobic helical hairpin (helices H8-H9). We wish to know how this structure changes to form a channel in a lipid bilayer. Although there is evidence that the open channel has four transmembrane segments (H8, H9, and parts of H1 and H6-H7), their arrangement relative to the pore is largely unknown. Given the lack of a detailed structural model, it is imperative to better characterize the channel-lining protein segments. Here, we focus on a segment of 44 residues (573–616), which in the crystal structure comprises the H8-H9 hairpin and flanking regions. We mutated each of these residues to a unique cysteine, added the mutant colicins to the cis side of planar bilayers to form channels, and determined whether sulfhydryl-specific methanethiosulfonate reagents could alter the conduction of ions through the open channel. We found a pattern of reactivity consistent with parts of H8 and H9 lining the channel as α-helices, albeit rather short ones for spanning a lipid bilayer (12 residues). The effects of the reactions on channel conductance and selectivity tend to be greater for residues near the amino terminus of H8 and the carboxy terminus of H9, with particularly large effects for G577C, T581C, and G609C, suggesting that these residues may occupy a relatively constricted region near the cis end of the channel

    Sizing the Protein Translocation Pathway of Colicin Ia Channels

    Get PDF
    The bacterial toxin colicin Ia forms voltage-gated channels in planar lipid bilayers. The toxin consists of three domains, with the carboxy-terminal domain (C-domain) responsible for channel formation. The C-domain contributes four membrane-spanning segments and a 68-residue translocated segment to the open channel, whereas the upstream domains and the amino-terminal end of the C-domain stay on the cis side of the membrane. The isolated C-domain, lacking the two upstream domains, also forms channels; however, the amino terminus and one of the normally membrane-spanning segments can move across the membrane. (This can be observed as a drop in single-channel conductance.) In longer carboxy-terminal fragments of colicin Ia that include ≤169 residues upstream from the C-domain, the entire upstream region is translocated. Presumably, a portion of the C-domain creates a pathway for the polar upstream region to move through the membrane. To determine the size of this translocation pathway, we have attached “molecular stoppers,” small disulfide-bonded polypeptides, to the amino terminus of the C-domain, and determined whether they could be translocated. We have found that the translocation rate is strongly voltage dependent, and that at voltages ≥90 mV, even a 26-Å stopper is translocated. Upon reduction of their disulfide bonds, all of the stoppers are easily translocated, indicating that it is the folded structure, rather than some aspect of the primary sequence, that slows translocation of the stoppers. Thus, the pathway for translocation is ≥26 Å in diameter, or can stretch to this value. This is large enough for an α-helical hairpin to fit through

    A kinetic analysis of protein transport through the anthrax toxin channel

    Get PDF
    Anthrax toxin is composed of three proteins: a translocase heptameric channel, (PA63)7, formed from protective antigen (PA), which allows the other two proteins, lethal factor (LF) and edema factor (EF), to translocate across a host cell’s endosomal membrane, disrupting cellular homeostasis. (PA63)7 incorporated into planar phospholipid bilayer membranes forms a channel capable of transporting LF and EF. Protein translocation through the channel can be driven by voltage on a timescale of seconds. A characteristic of the translocation of LFN, the N-terminal 263 residues of LF, is its S-shaped kinetics. Because all of the translocation experiments reported in the literature have been performed with more than one LFN molecule bound to most of the channels, it is not clear whether the S-shaped kinetics are an intrinsic characteristic of translocation kinetics or are merely a consequence of the translocation in tandem of two or three LFNs. In this paper, we show both in macroscopic and single-channel experiments that even with only one LFN bound to the channel, the translocation kinetics are S shaped. As expected, the translocation rate is slower with more than one LFN bound. We also present a simple electrodiffusion model of translocation in which LFN is represented as a charged rod that moves subject to both Brownian motion and an applied electric field. The cumulative distribution of first-passage times of the rod past the end of the channel displays S-shaped kinetics with a voltage dependence in agreement with experimental data
    corecore