43 research outputs found

    The Role of Inhibitory Receptors in Monosodium Urate Crystal-Induced Inflammation

    Get PDF
    Inhibitory receptors are key regulators of immune responses. Aberrant inhibitory receptor function can either lead to an exacerbated or defective immune response. Several regulatory mechanisms involved in the inflammatory reaction induced by monosodium urate crystals (MSU) during acute gout have been identified. One of these mechanisms involves inhibitory receptors. The engagement of the inhibitory receptors Clec12A and SIRL-1 has opposing effects on the responses of neutrophils to MSU. We review the general concepts of inhibitory receptor biology and apply them to understand and compare the modulation of MSU-induced inflammation by Clec12A and SIRL-1. We also discuss gaps in our knowledge of the contribution of inhibitory receptors to the pathogenesis of gout and propose future avenues of research

    The Inhibitory Receptor CLEC12A Regulates PI3K-Akt Signaling to Inhibit Neutrophil Activation and Cytokine Release

    Get PDF
    The myeloid inhibitory C-type lectin receptor CLEC12A limits neutrophil activation, pro-inflammatory pathways and disease in mouse models of inflammatory arthritis by a molecular mechanism that remains poorly understood. We addressed how CLEC12A-mediated inhibitory signaling counteracts activating signaling by cross-linking CLEC12A in human neutrophils. CLEC12A cross-linking induced its translocation to flotillin-rich membrane domains where its ITIM was phosphorylated in a Src-dependent manner. Phosphoproteomic analysis identified candidate signaling molecules regulated by CLEC12A that include MAPKs, phosphoinositol kinases and members of the JAK-STAT pathway. Stimulating neutrophils with uric acid crystals, the etiological agent of gout, drove the hyperphosphorylation of p38 and Akt. Ultimately, one of the pathways through which CLEC12A regulates uric acid crystal-stimulated release of IL-8 by neutrophils is through a p38/PI3K-Akt signaling pathway. In summary this work defines early molecular events that underpin CLEC12A signaling in human neutrophils to modulate cytokine synthesis. Targeting this pathway could be useful therapeutically to dampen inflammation

    Signal Inhibitory Receptor on Leukocytes-1 Limits the Formation of Neutrophil Extracellular Traps, but Preserves Intracellular Bacterial Killing

    No full text
    In response to microbial invasion, neutrophils release neutrophil extracellular traps (NETs) to trap and kill extracellular microbes. Alternatively, NET formation can result in tissue damage in inflammatory conditions and may perpetuate autoimmune disease. Intervention strategies that are aimed at modifying pathogenic NET formation should ideally preserve other neutrophil antimicrobial functions. We now show that signal inhibitory receptor on leukocytes-1 (SIRL-1) attenuates NET release by human neutrophils in response to distinct triggers, including opsonized Staphylococcus aureus and inflammatory danger signals. NET release has different kinetics depending on the stimulus, and rapid NET formation is independent of NADPH oxidase activity. In line with this, we show that NET release and reactive oxygen species production upon challenge with opsonized S. aureus require different signaling events. Importantly, engagement of SIRL-1 does not affect bacterially induced production of reactive oxygen species, and intracellular bacterial killing by neutrophils remains intact. Thus, our studies define SIRL-1 as an intervention point of benefit to suppress NET formation in disease while preserving intracellular antimicrobial defense

    A thinning algorithm by contour generation

    No full text
    corecore