1,345 research outputs found
Recommended from our members
Mechanisms and modeling of single-event upset
The basic mechanisms of single-event upset are reviewed, including charge collection in silicon junctions and transistors, and properties of single-event upset in CMOS static random access memory (SRAM) cells. The mechanisms are illustrated through the use of three-dimensional device and circuit simulations. Technology trends and implications for commercial devices are discussed
Bound and resonance states of the nonlinear Schroedinger equation in simple model systems
The stationary nonlinear Schroedinger equation, or Gross-Pitaevskii equation,
is studied for the cases of a single delta potential and a delta-shell
potential. These model systems allow analytical solutions, and thus provide
useful insight into the features of stationary bound, scattering and resonance
states of the nonlinear Schroedinger equation. For the single delta potential,
the influence of the potential strength and the nonlinearity is studied as well
as the transition from bound to scattering states. Furthermore, the properties
of resonance states for a repulsive delta-shell potential are discussed.Comment: 19 pages, 10 figure
Tracing the role of Arctic shelf processes in Si and N cycling and export through the Fram Strait: insights from combined silicon and nitrate isotopes
Nutrient cycles in the Arctic Ocean are being altered by changing hydrography, increasing riverine inputs, glacial melt and sea-ice loss due to climate change. In this study, combined isotopic measurements of dissolved nitrate (ÎŽ15N-NO3 and ÎŽ18O-NO3) and silicic acid (ÎŽ30Si(OH)4) are used to understand the pathways that major nutrients follow through the Arctic Ocean. Atlantic waters were found to be isotopically lighter (ÎŽ30Si(OH)4=+â1.74ââ°) than their polar counterpart (ÎŽ30Si(OH)4=+â1.85ââ°) owing to partial biological utilisation of dissolved Si (DSi) within the Arctic Ocean. Coupled partial benthic denitrification and nitrification on Eurasian Arctic shelves lead to the enrichment of ÎŽ15N-NO3 and lighter ÎŽ18O-NO3 in the polar surface waters (ÎŽ15N-NO3=â5.44ââ°, ÎŽ18O-NO3=â1.22ââ°) relative to Atlantic waters (ÎŽ15N-NO3=â5.18ââ°, ÎŽ18O-NO3=â2.33ââ°). Using a pan-Arctic DSi isotope dataset, we find that the input of isotopically light ÎŽ30Si(OH)4 by Arctic rivers and the subsequent partial biological uptake and biogenic Si burial on Eurasian shelves are the key processes that generate the enriched isotopic signatures of DSi exported through Fram Strait. A similar analysis of ÎŽ15N-NO3 highlights the role of N-limitation due to denitrification losses on Arctic shelves in generating the excess dissolved silicon exported through Fram Strait. We estimate that around 40â% of DSi exported in polar surface waters through Fram Strait is of riverine origin. As the Arctic Ocean is broadly N-limited and riverine sources of DSi are increasing faster than nitrogen inputs, a larger silicic acid export through the Fram Strait is expected in the future. Arctic riverine inputs therefore have the potential to modify the North Atlantic DSi budget and are expected to become more important than variable Pacific and glacial DSi sources over the coming decades.</p
Dual mechanism of brain injury and novel treatment strategy in maple syrup urine disease
Maple syrup urine disease (MSUD) is an inherited disorder of branched-chain amino acid metabolism presenting with lifethreatening cerebral oedema and dysmyelination in affected individuals. Treatment requires life-long dietary restriction and monitoring of branched-chain amino acids to avoid brain injury. Despite careful management, children commonly suffer metabolic decompensation in the context of catabolic stress associated with non-specific illness. The mechanisms underlying this decompensation and brain injury are poorly understood. Using recently developed mouse models of classic and intermediate maple syrup urine disease, we assessed biochemical, behavioural and neuropathological changes that occurred during encephalopathy in these mice. Here, we show that rapid brain leucine accumulation displaces other essential amino acids resulting in neurotransmitter depletion and disruption of normal brain growth and development. A novel approach of administering norleucine to heterozygous mothers of classic maple syrup urine disease pups reduced branched-chain amino acid accumulation in milk as well as blood and brain of these pups to enhance survival. Similarly, norleucine substantially delayed encephalopathy in intermediate maple syrup urine disease mice placed on a high protein diet that mimics the catabolic stress shown to cause encephalopathy in human maple syrup urine disease. Current findings suggest two converging mechanisms of brain injury in maple syrup urine disease including: (i) neurotransmitter deficiencies and growth restriction associated with branchedchain amino acid accumulation and (ii) energy deprivation through Krebs cycle disruption associated with branched-chain ketoacid accumulation. Both classic and intermediate models appear to be useful to study the mechanism of brain injury and potential treatment strategies for maple syrup urine disease. Norleucine should be further tested as a potential treatment to prevent encephalopathy in children with maple syrup urine disease during catabolic stress
Heavy Ion Microbeam and Broadbeam Transients in SiGe HBTs
SiGe HBT heavy ion current transients are measured using microbeam and both high- and low-energy broadbeam sources. These new data provide detailed insight into the effects of ion range, LET, and strike location
Characterising the impact of sex on severe asthma (SA) in the UK Severe Asthma Registry (UKSAR)
Peer reviewedPostprin
Multi-barrier resonant tunneling for the one-dimensional nonlinear Schr\"odinger Equation
For the stationary one-dimensional nonlinear Schr\"odinger equation (or
Gross-Pitaevskii equation) nonlinear resonant transmission through a finite
number of equidistant identical barriers is studied using a (semi-) analytical
approach. In addition to the occurrence of bistable transmission peaks known
from nonlinear resonant transmission through a single quantum well
(respectively a double barrier) complicated (looped) structures are observed in
the transmission coefficient which can be identified as the result of symmetry
breaking similar to the emergence of self-trapping states in double well
potentials. Furthermore it is shown that these results are well reproduced by a
nonlinear oscillator model based on a small number of resonance eigenfunctions
of the corresponding linear system.Comment: 22 pages, 11 figure
Modelling the impact of wastewater flows and management practices on antimicrobial resistance in dairy farms
Dairy slurry is a major source of environmental contamination with antimicrobial resistant genes and bacteria. We developed mathematical models and conducted on-farm research to explore the impact of wastewater flows and management practices on antimicrobial resistance (AMR) in slurry. Temporal fluctuations in cephalosporin-resistant Escherichia coli were observed and attributed to farm activities, specifically the disposal of spent copper and zinc footbath into the slurry system. Our model revealed that resistance should be more frequently observed with relevant determinants encoded chromosomally rather than on plasmids, which was supported by reanalysis of sequenced genomes from the farm. Additionally, lower resistance levels were predicted in conditions with lower growth and higher death rates. The use of muck heap effluent for washing dirty channels did not explain the fluctuations in cephalosporin resistance. These results highlight farm-specific opportunities to reduce AMR pollution, beyond antibiotic use reduction, including careful disposal or recycling of waste antimicrobial metals
Modelling the impact of wastewater flows and management practices on antimicrobial resistance in dairy farms
Dairy slurry is a major source of environmental contamination with antimicrobial resistant genes and bacteria. We developed mathematical models and conducted on-farm research to explore the impact of wastewater flows and management practices on antimicrobial resistance (AMR) in slurry. Temporal fluctuations in cephalosporin-resistant Escherichia coli were observed and attributed to farm activities, specifically the disposal of spent copper and zinc footbath into the slurry system. Our model revealed that resistance should be more frequently observed with relevant determinants encoded chromosomally rather than on plasmids, which was supported by reanalysis of sequenced genomes from the farm. Additionally, lower resistance levels were predicted in conditions with lower growth and higher death rates. The use of muck heap effluent for washing dirty channels did not explain the fluctuations in cephalosporin resistance. These results highlight farm-specific opportunities to reduce AMR pollution, beyond antibiotic use reduction, including careful disposal or recycling of waste antimicrobial metals
Development of a PbWO4 Detector for Single-Shot Positron Annihilation Lifetime Spectroscopy at the GBAR Experiment
We have developed a PbWO4 (PWO) detector with a large dynamic range to measure the intensity of a positron beam and the absolute density of the ortho-positronium (o-Ps) cloud it creates. A simulation study shows that a setup based on such detectors may be used to determine the angular distribution of the emission and reflection of o-Ps to reduce part of the uncertainties of the measurement. These will allow to improve the precision in the measurement of the cross-section for the (anti)hydrogen formation by (anti)proton-positronium charge exchange and to optimize the yield of antihydrogen ion which is an essential parameter in the GBAR experiment
- âŠ