49 research outputs found

    Sticky DNA, a Long GAA·GAA·TTC Triplex That Is Formed Intramolecularly, in the Sequence of Intron 1 of the Frataxin Gene

    Get PDF
    Friedreich's ataxia is caused by the massive expansion of GAA.TTC repeats in intron 1 of the frataxin (X25) gene. Our prior investigations showed that long GAA.TTC repeats formed very stable triplex structures which caused two repeat tracts to adhere to each other (sticky DNA). This process was dependent on negative supercoiling and the presence of divalent metal ions. Herein, we have investigated the formation of sticky DNA from plasmid monomers and dimers; sticky DNA is formed only when two tracts of sufficiently long (GAA.TTC)(n) (n = 59-270) are present in a single plasmid DNA and are in the direct repeat orientation. If the inserts are in the indirect (inverted) repeat orientation, no sticky DNA was observed. Furthermore, kinetic studies support the intramolecular nature of sticky DNA formation. Electron microscopy investigations also provide strong data for sticky DNA as a single long triplex. Hence, these results give new insights into our understanding of the capacity of sticky DNA to inhibit transcription and thereby reduce the level of frataxin protein as related to the etiology of Friedreich's ataxia

    Mapping Subunit Location on the Saccharomyces cerevisiae Origin Recognition Complex Free and Bound to DNA Using a Novel Nanoscale Biopointer

    Get PDF
    The Saccharomyces cerevisiae origin recognition complex (ORC) is composed of six subunits and is an essential component in the assembly of the replication apparatus. To probe the organization of this multiprotein complex by electron microscopy, each subunit was tagged on either its C or N terminus with biotin and assembled into a complex with the five other unmodified subunits. A nanoscale biopointer consisting of a short DNA duplex with streptavidin at one end was used to map the location of the N and C termini of each subunit. These observations were made using ORC free in solution and bound to the ARS1 origin of replication. This mapping confirms and extends previous studies mapping the sites of subunit interaction with origin DNA. In particular, we provide new information concerning the stoichiometry of the ORC-ARS1 complex and the changes in conformation that are associated with DNA binding by ORC. This versatile, new approach to mapping protein structure has potential for many applications

    Mapping of an origin of DNA replication in the promoter of fragile X gene FMR1

    Get PDF
    An origin of bidirectional DNA replication was mapped to the promoter of the FMR1 gene in human chromosome Xq27.3, which has been linked to the fragile X syndrome. This origin is adjacent to a CpG island and overlaps the site of expansion of the triplet repeat (CGG) at the fragile X instability site, FRAXA. The promoter region of FMR2 in the FRAXE site (approximately 600 kb away, in chromosome band Xq28) also includes an origin of replication, as previously described. FMR1 transcripts were detected in foreskin and male fetal lung fibroblasts, while FMR2 transcripts were not. However, both FMR1 and FMR2 were found to replicate late in S phase (approximately six hours into the S phase of normal human fibroblasts). The position of the origin of replication relative to the CGG repeat, and perhaps the late replication of these genes, might be important factors in the susceptibility to triplet repeat amplification at the FRAXA and FRAXE sites

    Titanium dioxide nanoparticles activate the ATM-Chk2 DNA damage response in human dermal fibroblasts

    Get PDF
    The use of nanoparticles in consumer products increases their prevalence in the environment and the potential risk to human health. Although recent studies have shown in vivo and in vitro toxicity of titanium dioxide nanoparticles (nano-TiO2), a more detailed view of the underlying mechanisms of this response needs to be established. Here the effects of nano-TiO2 on the DNA damage response and DNA replication dynamics were investigated in human dermal fibroblasts. Specifically, the relationship between nano-TiO2 and the DNA damage response pathways regulated by ATM/Chk2 and ATR/Chk1 were examined. The results show increased phosphorylation of H2AX, ATM, and Chk2 after exposure. In addition, nano-TiO2 inhibited the overall rate of DNA synthesis and frequency of replicon initiation events in DNA combed fibers. Taken together, these results demonstrate that exposure to nano-TiO2 activates the ATM/Chk2 DNA damage response pathway

    Human CST promotes telomere duplex replication and general replication restart after fork stalling

    Get PDF
    Mammalian CST (CTC1-STN1-TEN1) associates with telomeres and depletion of CTC1 or STN1 causes telomere defects. However, the function of mammalian CST remains poorly understood. We show here that depletion of CST subunits leads to both telomeric and non-telomeric phenotypes associated with DNA replication defects. Stable knockdown of CTC1 or STN1 increases the incidence of anaphase bridges and multi-telomeric signals, indicating genomic and telomeric instability. STN1 knockdown also delays replication through the telomere indicating a role in replication fork passage through this natural barrier. Furthermore, we find that STN1 plays a novel role in genome-wide replication restart after hydroxyurea (HU)-induced replication fork stalling. STN1 depletion leads to reduced EdU incorporation after HU release. However, most forks rapidly resume replication, indicating replisome integrity is largely intact and STN1 depletion has little effect on fork restart. Instead, STN1 depletion leads to a decrease in new origin firing. Our findings suggest that CST rescues stalled replication forks during conditions of replication stress, such as those found at natural replication barriers, likely by facilitating dormant origin firing

    Accumulation of true single strand breaks and AP sites in base excision repair deficient cells

    Get PDF
    Single strand breaks (SSBs) are one of the most frequent DNA lesions caused by endogenous and exogenous agents. The most utilized alkaline-based assays for SSB detection frequently give false positive results due to the presence of alkali-labile sites that are converted to SSBs. Methoxyamine, an acidic O-hydroxylamine, has been utilized to measure DNA damage in cells. However, the neutralization of methoxyamine is required prior to usage. Here we developed a convenient, specific SSB assay using alkaline gel electrophoresis (AGE) coupled with a neutral O-hydroxylamine, O-(tetrahydro-2H-pyran-2-yl)hydroxylamine (OTX). OTX stabilizes abasic sites (AP sites) to prevent their alkaline incision while still allowing for strong alkaline DNA denaturation. DNA from DT40 and isogenic polymerase β null cells exposed to methyl methanesulfonate were applied to the OTX-coupled AGE (OTX-AGE) assay. Time-dependent increases in SSBs were detected in each cell line with more extensive SSB formation in the null cells. These findings were supported by an assay that indirectly detects SSBs through measuring NAD(P)H depletion. An ARP-slot blot assay demonstrated a significant time-dependent increase in AP sites in both cell lines by 1 mM MMS compared to control. Furthermore, the Pol β-null cells displayed greater AP site formation than the parental DT40 cells. OTX use represents a facile approach for assessing SSB formation, whose benefits can also be applied to other established SSB assays

    DNA Damage Checkpoint Responses in the S Phase of Synchronized Diploid Human Fibroblasts

    Get PDF
    We investigated the hypothesis that the strength of the activation of the intra-S DNA damage checkpoint varies within the S phase. Synchronized diploid human fibroblasts were exposed to either 0 or 2.5 J m−2 UVC in early, mid- and late-S phase. The endpoints measured were the following: (1) radio-resistant DNA synthesis (RDS), (2) induction of Chk1 phosphorylation, (3) initiation of new replicons and (4) length of replication tracks synthesized after irradiation. RDS analysis showed that global DNA synthesis was inhibited by approximately the same extent (30 ± 12%), regardless of when during S phase the fibroblasts were exposed to UVC. Western blot analysis revealed that the UVC-induced phosphorylation of checkpoint kinase 1 (Chk1) on serine 345 was high in early and mid S but 10-fold lower in late S. DNA fiber immunostaining studies indicated that the replication fork displacement rate decreased in irradiated cells at the three time points examined; however, replicon initiation was inhibited strongly in early and mid S, but this response was attenuated in late S. These results suggest that the intra-S checkpoint activated by UVC-induced DNA damage is not as robust toward the end of S phase in its inhibition of the latest firing origins in human fibroblasts

    SWI/SNF complexes are required for full activation of the DNA-damage response

    Get PDF
    SWI/SNF complexes utilize BRG1 (also known as SMARCA4) or BRM (also known as SMARCA2) as alternative catalytic subunits with ATPase activity to remodel chromatin. These chromatin-remodeling complexes are required for mammalian development and are mutated in ~20% of all human primary tumors. Yet our knowledge of their tumor-suppressor mechanism is limited. To investigate the role of SWI/SNF complexes in the DNA-damage response (DDR), we used shRNAs to deplete BRG1 and BRM and then exposed these cells to a panel of 6 genotoxic agents. Compared to controls, the shRNA knockdown cells were hypersensitive to certain genotoxic agents that cause double-strand breaks (DSBs) associated with stalled/collapsed replication forks but not to ionizing radiation-induced DSBs that arise independently of DNA replication. These findings were supported by our analysis of DDR kinases, which demonstrated a more prominent role for SWI/SNF in the activation of the ATR-Chk1 pathway than the ATM-Chk2 pathway. Surprisingly, γH2AX induction was attenuated in shRNA knockdown cells exposed to a topoisomerase II inhibitor (etoposide) but not to other genotoxic agents including IR. However, this finding is compatible with recent studies linking SWI/SNF with TOP2A and TOP2BP1. Depletion of BRG1 and BRM did not result in genomic instability in a tumor-derived cell line but did result in nucleoplasmic bridges in normal human fibroblasts. Taken together, these results suggest that SWI/SNF tumor-suppressor activity involves a role in the DDR to attenuate replicative stress and genomic instability. These results may also help to inform the selection of chemotherapeutics for tumors deficient for SWI/SNF function

    DNA replication and the GINS complex: localization on extended chromatin fibers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The GINS complex is thought to be essential for the processes of initiation and elongation of DNA replication. This complex contains four subunits, one of which (Psf1) is proposed to bind to both chromatin and DNA replication-associated proteins. To date there have been no microscopic analyses to evaluate the chromatin distribution of this complex. Here, we show the organization of GINS complexes on extended chromatin fibers in relation to sites of DNA replication and replication-associated proteins.</p> <p>Results</p> <p>Using immunofluorescence microscopy we were able to visualize ORC1, ORC2, PCNA, and GINS complex proteins Psf1 and Psf2 bound to extended chromatin fibers. We were also able to detect these proteins concurrently with the visualization of tracks of recently replicated DNA where EdU, a thymidine analog, was incorporated. This allowed us to assess the chromatin association of proteins of interest in relation to the process of DNA replication. ORC and GINS proteins were found on chromatin fibers before replication could be detected. These proteins were also associated with newly replicated DNA in bead-like structures. Additionally, GINS proteins co-localized with PCNA at sites of active replication.</p> <p>Conclusion</p> <p>In agreement with its proposed role in the initiation of DNA replication, GINS proteins associated with chromatin near sites of ORC binding that were devoid of EdU (absence of DNA replication). The association of GINS proteins with PCNA was consistent with a role in the process of elongation. Additionally, the large size of our chromatin fibers (up to approximately 7 Mb) allowed for a more expansive analysis of the distance between active replicons than previously reported.</p
    corecore