25 research outputs found
Impact of primary kidney disease on the effects of empagliflozin in patients with chronic kidney disease: secondary analyses of the EMPA-KIDNEY trial
Background: The EMPA KIDNEY trial showed that empagliflozin reduced the risk of the primary composite outcome of kidney disease progression or cardiovascular death in patients with chronic kidney disease mainly through slowing progression. We aimed to assess how effects of empagliflozin might differ by primary kidney disease across its broad population. Methods: EMPA-KIDNEY, a randomised, controlled, phase 3 trial, was conducted at 241 centres in eight countries (Canada, China, Germany, Italy, Japan, Malaysia, the UK, and the USA). Patients were eligible if their estimated glomerular filtration rate (eGFR) was 20 to less than 45 mL/min per 1·73 m2, or 45 to less than 90 mL/min per 1·73 m2 with a urinary albumin-to-creatinine ratio (uACR) of 200 mg/g or higher at screening. They were randomly assigned (1:1) to 10 mg oral empagliflozin once daily or matching placebo. Effects on kidney disease progression (defined as a sustained ≥40% eGFR decline from randomisation, end-stage kidney disease, a sustained eGFR below 10 mL/min per 1·73 m2, or death from kidney failure) were assessed using prespecified Cox models, and eGFR slope analyses used shared parameter models. Subgroup comparisons were performed by including relevant interaction terms in models. EMPA-KIDNEY is registered with ClinicalTrials.gov, NCT03594110. Findings: Between May 15, 2019, and April 16, 2021, 6609 participants were randomly assigned and followed up for a median of 2·0 years (IQR 1·5–2·4). Prespecified subgroupings by primary kidney disease included 2057 (31·1%) participants with diabetic kidney disease, 1669 (25·3%) with glomerular disease, 1445 (21·9%) with hypertensive or renovascular disease, and 1438 (21·8%) with other or unknown causes. Kidney disease progression occurred in 384 (11·6%) of 3304 patients in the empagliflozin group and 504 (15·2%) of 3305 patients in the placebo group (hazard ratio 0·71 [95% CI 0·62–0·81]), with no evidence that the relative effect size varied significantly by primary kidney disease (pheterogeneity=0·62). The between-group difference in chronic eGFR slopes (ie, from 2 months to final follow-up) was 1·37 mL/min per 1·73 m2 per year (95% CI 1·16–1·59), representing a 50% (42–58) reduction in the rate of chronic eGFR decline. This relative effect of empagliflozin on chronic eGFR slope was similar in analyses by different primary kidney diseases, including in explorations by type of glomerular disease and diabetes (p values for heterogeneity all >0·1). Interpretation: In a broad range of patients with chronic kidney disease at risk of progression, including a wide range of non-diabetic causes of chronic kidney disease, empagliflozin reduced risk of kidney disease progression. Relative effect sizes were broadly similar irrespective of the cause of primary kidney disease, suggesting that SGLT2 inhibitors should be part of a standard of care to minimise risk of kidney failure in chronic kidney disease. Funding: Boehringer Ingelheim, Eli Lilly, and UK Medical Research Council
Recommended from our members
Encoding latent SuFEx reactive meta-fluorosulfate tyrosine to expand covalent bonding of proteins
The introduction of new covalent bonds into proteins is affording novel avenues for protein research and applications, yet it remains difficult to generate covalent linkages at all possible sites and across diverse protein classes. Herein, we genetically encoded meta-fluorosulfate-L-tyrosine (mFSY) to selectively react with lysine, tyrosine, and histidine via proximity-enabled SuFEx reaction. mFSY was able to target residues that were elusive for previous unnatural amino acids, and permitted engineering of various proteins including affibody, nanobody, and Fab into covalent binders that irreversibly cross-linked EGFR and HER2. mFSY is thus valuable for developing covalent proteins for biological research, synthetic biology, and biotherapeutics
Imaging and Patterning of Monomolecular Resists by Zone-Plate-Focused X-ray Microprobe
Klauser R, Hong I-H, Wang S-C, et al. Imaging and Patterning of Monomolecular Resists by Zone-Plate-Focused X-ray Microprobe. JOURNAL OF PHYSICAL CHEMISTRY B. 2003;107(47):13133-13142.Soft X-ray scanning photoelectron microscopy (SPEM) was applied to image and characterize molecular patterns produced by electron irradiation of various aliphatic and aromatic thiol-derived self-assembled monolayers (SAMs). The observed chemical contrasts allowed us to monitor complex phenomena which occurred as a result of electron-beam patterning, the exposure of the patterned films to ambient, and the irradiation of the films by the X-ray microprobe during image acquisition. The latter effect has been analyzed in detail and utilized for direct lithographic writing in the SAM resists by the zone-plate-focused X-ray beam. The results demonstrate the capabilities of the SPEM technique both for chemical imaging and as a fabrication tool for micro- and nanolithography
Recommended from our members
Covalent Proteins as Targeted Radionuclide Therapies Enhance Antitumor Effects
Molecularly targeted radionuclide therapies (TRTs) struggle with balancing efficacy and safety, as current strategies to increase tumor absorption often alter drug pharmacokinetics to prolong circulation and normal tissue irradiation. Here we report the first covalent protein TRT, which, through reacting with the target irreversibly, increases radioactive dose to the tumor without altering the drug's pharmacokinetic profile or normal tissue biodistribution. Through genetic code expansion, we engineered a latent bioreactive amino acid into a nanobody, which binds to its target protein and forms a covalent linkage via the proximity-enabled reactivity, cross-linking the target irreversibly in vitro, on cancer cells, and on tumors in vivo. The radiolabeled covalent nanobody markedly increases radioisotope levels in tumors and extends tumor residence time while maintaining rapid systemic clearance. Furthermore, the covalent nanobody conjugated to the α-emitter actinium-225 inhibits tumor growth more effectively than the noncovalent nanobody without causing tissue toxicity. Shifting the protein-based TRT from noncovalent to covalent mode, this chemical strategy improves tumor responses to TRTs and can be readily scaled to diverse protein radiopharmaceuticals engaging broad tumor targets
A Genetically Encoded Fluorosulfonyloxybenzoyl-l-lysine for Expansive Covalent Bonding of Proteins via SuFEx Chemistry.
Genetically introducing novel chemical bonds into proteins provides innovative avenues for biochemical research, protein engineering, and biotherapeutic applications. Recently, latent bioreactive unnatural amino acids (Uaas) have been incorporated into proteins to covalently target natural residues through proximity-enabled reactivity. Aryl fluorosulfate is particularly attractive due to its exceptional biocompatibility and multitargeting capability via sulfur(VI) fluoride exchange (SuFEx) reaction. Thus far, fluorosulfate-l-tyrosine (FSY) is the only aryl fluorosulfate-containing Uaa that has been genetically encoded. FSY has a relatively rigid and short side chain, which restricts the diversity of proteins targetable and the scope of applications. Here we designed and genetically encoded a new latent bioreactive Uaa, fluorosulfonyloxybenzoyl-l-lysine (FSK), in E. coli and mammalian cells. Due to its long and flexible aryl fluorosulfate-containing side chain, FSK was particularly useful in covalently linking protein sites that are unreachable with FSY, both intra- and intermolecularly, in vitro and in live cells. In addition, we created covalent nanobodies that irreversibly bound to epidermal growth factor receptors (EGFR) on cells, with FSK and FSY targeting distinct positions on EGFR to counter potential mutational resistance. Moreover, we established the use of FSK and FSY for genetically encoded chemical cross-linking to capture elusive enzyme-substrate interactions in live cells, allowing us to target residues aside from Cys and to cross-link at the binding periphery. FSK complements FSY to expand target diversity and versatility. Together, they provide a powerful, genetically encoded, latent bioreactive SuFEx system for creating covalent bonds in diverse proteins in vitro and in vivo, which will be widely useful for biological research and applications
Recommended from our members
Genetically Encoded Quinone Methides Enabling Rapid, Site-Specific, and Photocontrolled Protein Modification with Amine Reagents
Site-specific modification of proteins with functional molecules provides powerful tools for researching and engineering proteins. Here we report a new chemical conjugation method which photocages highly reactive but chemically selective moieties, enabling the use of protein-inert amines for selective protein modification. New amino acids FnbY and FmnbY, bearing photocaged quinone methides (QMs), were genetically incorporated into proteins. Upon light activation, they generated highly reactive QM, which rapidly reacted with amine derivatives. This method features a rare combination of desired properties including fast kinetics, small and stable linkage, compatibility with low temperature, photocontrollability, and widely available reagents. Moreover, labeling via FnbY occurs on the β-carbon, affording the shortest linkage to protein backbone which is essential for advanced studies involving orientation and distance. We installed various functionalities onto proteins and attached a spin label as close as possible to the protein backbone, achieving high resolution in double electron-electron paramagnetic resonance distance measurements