2,379 research outputs found

    Colloidal dynamics in polymer solutions: Optical two-point microrheology measurements

    Full text link
    We present an extension of the two-point optical microrheology technique introduced by Crocker \textit{et al.} [Phys. Rev. Lett. \textbf{85}, 888 (2000)] to high frequencies. The correlated fluctuations of two probe spheres held by a pair of optical tweezers within a viscoelastic medium are determined using optical interferometry. A theoretical model is developed to yield the frequency-dependent one- and two-particle response functions from the correlated motion. We demonstrate the validity of this method by determining the one- and two-particle correlations in a semi-dilute solution of polystyrene in decalin. We find that the ratio of the one- and two-particle response functions is anomalous which we interpret as evidence for a slip boundary condition caused by depletion of polymer from the surface of the particle

    Non-additivity of pair interactions in charged colloids

    Get PDF
    It is general wisdom that the pair potential of charged colloids in a liquid may be closely approximated by a Yukawa interaction, as predicted by the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. We experimentally determine the effective forces in a binary mixture of like-charged particles, of species 1 and 2, with blinking optical tweezers. The measured forces are consistent with a Yukawa pair potential but the (12) cross-interaction is not equal to the geometric mean of the (11) and (22) like-interactions, as expected from DLVO. The deviation is a function of the electrostatic screening length and the size ratio, with the cross-interaction measured being consistently weaker than DLVO predictions. The corresponding non-additivity parameter is negative and grows in magnitude with increased size asymmetry.Comment: Final versio

    Measurement of Effective Temperatures in an Aging Colloidal Glass

    Full text link
    We study the thermal fluctuations of an optically confined probe particle, suspended in an aging colloidal suspension, as the suspension transforms from a viscous liquid into an elastic glass. The micron-sized bead forms a harmonic oscillator. By monitoring the equal-time fluctuations of the tracer, at two different laser powers, we determine the temperature of the oscillator, ToT_{\text{o}}. In the ergodic liquid the temperatures of the oscillator and its environment are equal while, in contrast, in a nonequilibrium glassy phase we find that ToT_{\text{o}} substantially exceeds the bath temperature.Comment: 4 pages (minor changes, accepted Phys. Rev. Lett.

    Conversion Efficiencies of Heteronuclear Feshbach Molecules

    Full text link
    We study the conversion efficiency of heteronuclear Feshbach molecules in population imbalanced atomic gases formed by ramping the magnetic field adiabatically. We extend the recent work [J. E. Williams et al., New J. Phys., 8, 150 (2006)] on the theory of Feshbach molecule formations to various combinations of quantum statistics of each atomic component. A simple calculation for a harmonically trapped ideal gas is in good agreement with the recent experiment [S. B. Papp and C. E. Wieman, Phys. Rev. Lett., 97, 180404 (2006)] without any fitting parameters. We also give the conversion efficiency as an explicit function of initial peak phase space density of the majority species for population imbalanced gases. In the low-density region where Bose-Einstein condensation does not appear, the conversion efficiency is a monotonic function of the initial peak phase space density, but independent of statistics of a minority component. The quantum statistics of majority atoms has a significant effect on the conversion efficiency. In addition, Bose-Einstein condensation of an atomic component is the key element determining the maximum conversion efficiency.Comment: 46 pages, 32 figure

    Phase separation dynamics in colloid-polymer mixtures: the effect of interaction range

    Full text link
    Colloid-polymer mixtures may undergo either fluid-fluid phase separation or gelation. This depends on the depth of the quench (polymer concentration) and polymer-colloid size ratio. We present a real-space study of dynamics in phase separating colloid-polymer mixtures with medium- to long-range attractions (polymer-colloid size ratio q_R=0.45-0.89, with the aim of understanding the mechanism of gelation as the range of the attraction is changed. In contrast to previous studies of short-range attractive systems, where gelation occurs shortly after crossing the equilibrium phase boundary, we find a substantial region of fluid-fluid phase separation. On deeper quenches the system undergoes a continuous crossover to gel formation. We identify two regimes, `classical' phase separation, where single particle relaxation is faster than the dynamics of phase separation, and `viscoelastic' phase separation, where demixing is slowed down appreciably due to slow dynamics in the colloid-rich phase. Particles at the surface of the strands of the network exhibit significantly greater mobility than those buried inside the gel strand which presents a method for coarsening.Comment: 8 page
    corecore