287 research outputs found
Towards single-electron metrology
We review the status of the understanding of single-electron transport (SET)
devices with respect to their applicability in metrology. Their envisioned role
as the basis of a high-precision electrical standard is outlined and is
discussed in the context of other standards. The operation principles of single
electron transistors, turnstiles and pumps are explained and the fundamental
limits of these devices are discussed in detail. We describe the various
physical mechanisms that influence the device uncertainty and review the
analytical and numerical methods needed to calculate the intrinsic uncertainty
and to optimise the fabrication and operation parameters. Recent experimental
results are evaluated and compared with theoretical predictions. Although there
are discrepancies between theory and experiments, the intrinsic uncertainty is
already small enough to start preparing for the first SET-based metrological
applications.Comment: 39 pages, 14 figures. Review paper to be published in International
Journal of Modern Physics
Coherent photon assisted cotunneling in a Coulomb blockade device
We study cotunneling in a double junction Coulomb blockade device under the
influence of time dependent potentials. It is shown that the ac-bias leads to
photon assisted cotunneling which in some cases may dominate the transport. We
derive a general non-perturbative expression for the tunneling current in the
presence of oscillating potentials and give a perturbative expression for the
photon assisted cotunneling current.Comment: Replaced with a longer paper which includes a non-perturbative
calculation. 13 pages with 1 figure. To be published in Physical Review
Improved X-ray detection and particle identification with avalanche photodiodes
Avalanche photodiodes are commonly used as detectors for low energy x-rays.
In this work we report on a fitting technique used to account for different
detector responses resulting from photo absorption in the various APD layers.
The use of this technique results in an improvement of the energy resolution at
8.2 keV by up to a factor of 2, and corrects the timing information by up to 25
ns to account for space dependent electron drift time. In addition, this
waveform analysis is used for particle identification, e.g. to distinguish
between x-rays and MeV electrons in our experiment.Comment: 6 pages, 6 figure
Mixtures of organic micropollutants exacerbated in vitro neurotoxicity of prymnesins and contributed to aquatic toxicity during a toxic algal bloom
Prymnesins produced by an algal bloom of Prymnesium parvum led to the death of several hundred tons of freshwater fish in the Oder River in summer 2022. We investigated effects on aquatic life and human cell lines from exposure to extracts of contaminated water collected during the fish kill. We detected B-type prymnesins and >120 organic micropollutants. The micropollutants occurred at concentrations that would cause the predicted mixture risk quotient for aquatic life to exceed the acceptable threshold. Extracts of water and filters (biomass and particulates) induced moderate effects in vivo in algae, daphnids and zebrafish embryos but caused high effects in a human neuronal cell line indicating the presence of neurotoxicants. Mixture toxicity modelling demonstrated that the in vitro neurotoxic effects were mainly caused by the detected B-type prymnesins with minor contributions by organic micropollutants. Complex interactions between natural and anthropogenic toxicants may underestimate threats to aquatic ecosystems
An international standardization programme towards the application of gene expression profiling in routine leukaemia diagnostics: the Microarray Innovations in LEukemia study prephase
Gene expression profiling has the potential to enhance current methods for the diagnosis of haematological malignancies. Here, we present data on 204 analyses from an international standardization programme that was conducted in 11 laboratories as a prephase to the Microarray Innovations in LEukemia (MILE) study. Each laboratory prepared two cell line samples, together with three replicate leukaemia patient lysates in two distinct stages: (i) a 5-d course of protocol training, and (ii) independent proficiency testing. Unsupervised, supervised, and r2 correlation analyses demonstrated that microarray analysis can be performed with remarkably high intra-laboratory reproducibility and with comparable quality and reliability
Searching for a Stochastic Background of Gravitational Waves with LIGO
The Laser Interferometer Gravitational-wave Observatory (LIGO) has performed
the fourth science run, S4, with significantly improved interferometer
sensitivities with respect to previous runs. Using data acquired during this
science run, we place a limit on the amplitude of a stochastic background of
gravitational waves. For a frequency independent spectrum, the new limit is
. This is currently the most sensitive
result in the frequency range 51-150 Hz, with a factor of 13 improvement over
the previous LIGO result. We discuss complementarity of the new result with
other constraints on a stochastic background of gravitational waves, and we
investigate implications of the new result for different models of this
background.Comment: 37 pages, 16 figure
Normative modeling of brain morphometry in Clinical High-Risk for Psychosis
Importance: The lack of robust neuroanatomical markers of psychosis risk has been traditionally attributed to heterogeneity. A complementary hypothesis is that variation in neuroanatomical measures in the majority of individuals at psychosis risk may be nested within the range observed in healthy individuals.
Objective: To quantify deviations from the normative range of neuroanatomical variation in individuals at clinical high-risk for psychosis (CHR-P) and evaluate their overlap with healthy variation and their association with positive symptoms, cognition, and conversion to a psychotic disorder.
Design setting and participants: Clinical, IQ and FreeSurfer-derived regional measures of cortical thickness (CT), cortical surface area (SA), and subcortical volume (SV) from 1,340 CHR-P individuals [47.09% female; mean age: 20.75 (4.74) years] and 1,237 healthy individuals [44.70% female; mean age: 22.32 (4.95) years] from 29 international sites participating in the ENIGMA Clinical High Risk for Psychosis Working Group.
Main outcomes and measures: For each regional morphometric measure, z-scores were computed that index the degree of deviation from the normative means of that measure in a healthy reference population (N=37,407). Average deviation scores (ADS) for CT, SA, SV, and globally across all measures (G) were generated by averaging the respective regional z-scores. Regression analyses were used to quantify the association of deviation scores with clinical severity and cognition and two-proportion z-tests to identify case-control differences in the proportion of individuals with infranormal (z1.96) scores.
Results: CHR-P and healthy individuals overlapped in the distributions of the observed values, regional z-scores, and all ADS vales. The proportion of CHR-P individuals with infranormal or supranormal values in any metric was low (<12%) and similar to that of healthy individuals. CHR-P individuals who converted to psychosis compared to those who did not convert had a higher percentage of infranormal values in temporal regions (5-7% vs 0.9-1.4%). In the CHR-P group, only the ADS SA showed significant but weak associations (|β|<0.09; P FDR <0.05) with positive symptoms and IQ.
Conclusions and relevance: The study findings challenge the usefulness of macroscale neuromorphometric measures as diagnostic biomarkers of psychosis risk and suggest that such measures do not provide an adequate explanation for psychosis risk.
Key points: Question: Is the risk of psychosis associated with brain morphometric changes that deviate significantly from healthy variation?Findings: In this study of 1340 individuals high-risk for psychosis (CHR-P) and 1237 healthy participants, individual-level variation in macroscale neuromorphometric measures of the CHR-P group was largely nested within healthy variation and was not associated with the severity of positive psychotic symptoms or conversion to a psychotic disorder.Meaning: The findings suggest the macroscale neuromorphometric measures have limited utility as diagnostic biomarkers of psychosis risk
TelomereHunter – in silico estimation of telomere content and composition from cancer genomes
Background: Establishment of telomere maintenance mechanisms is a universal step in tumor development to achieve replicative immortality. These processes leave molecular footprints in cancer genomes in the form of altered telomere content and aberrations in telomere composition. To retrieve these telomere characteristics from high-throughput sequencing data the available computational approaches need to be extended and optimized to fully exploit the information provided by large scale cancer genome data sets.
Results: We here present TelomereHunter, a software for the detailed characterization of telomere maintenance mechanism footprints in the genome. The tool is implemented for the analysis of large cancer genome cohorts and provides a variety of diagnostic diagrams as well as machine-readable output for subsequent analysis. A novel key feature is the extraction of singleton telomere variant repeats, which improves the identification and subclassification of the alternative lengthening of telomeres phenotype. We find that whole genome sequencing-derived telomere content estimates strongly correlate with telomere qPCR measurements (r = 0.94). For the first time, we determine the correlation of in silico telomere content quantification from whole genome sequencing and whole genome bisulfite sequencing data derived from the same tumor sample (r = 0.78). An analogous comparison of whole exome sequencing data and whole genome sequencing data measured slightly lower correlation (r = 0.79). However, this is considerably improved by normalization with matched controls (r = 0.91).
Conclusions: TelomereHunter provides new functionality for the analysis of the footprints of telomere maintenance mechanisms in cancer genomes. Besides whole genome sequencing, whole exome sequencing and whole genome bisulfite sequencing are suited for in silico telomere content quantification, especially if matched control samples are available. The software runs under a GPL license and is available at https://www.dkfz.de/en/applied-bioinformatics/telomerehunter/telomerehunter.html
Automated workflow-based exploitation of pathway databases provides new insights into genetic associations of metabolite profiles
Background: Genome-wide association studies (GWAS) have identified many common single nucleotide polymorphisms (SNPs) that associate with clinical phenotypes, but these SNPs usually explain just a small part of the heritability and have relatively modest effect sizes. In contrast, SNPs that associate with metabolite levels generally explain a higher percentage of the genetic variation and demonstrate larger effect sizes. Still, the discovery of SNPs associated with metabolite levels is challenging since testing all metabolites measured in typical metabolomics studies with all SNPs comes with a severe multiple testing penalty. We have developed an automated workflow approach that utilizes prior knowledge of biochemical pathways present in databases like KEGG and BioCyc to generate a smaller SNP set relevant to the metabolite. This paper explores the opportunities and challenges in the analysis of GWAS of metabolomic phenotypes and provides novel insights into the genetic basis of metabolic variation through the re-analysis of published GWAS datasets. Results: Re-analysis of the published GWAS dataset from Illig et al. (Nature Genetics, 2010) using a pathway-based workflow (http://www.myexperiment.org/packs/319.html), confirmed previously identified hits and identified a new locus of human metabolic individuality, associating Aldehyde dehydrogenase family1 L1 (ALDH1L1) with serine/glycine ratios in blood. Replication in an independent GWAS dataset of phospholipids (Demirkan et al., PLoS Genetics, 2012) identified two novel loci supported by additional literature evidence: GPAM (Glycerol-3 phosphate acyltransferase) and CBS (Cystathionine beta-synthase). In addition, the workflow approach provided novel insight into the affected pathways and relevance of some of these gene-metabolite pairs in disease development and progression. Conclusions: We demonstrate the utility of automated exploitation of background knowledge present in pathway databases for the analysis of GWAS datasets of metabolomic phenotypes. We report novel loci and potential biochemical mechanisms that contribute to our understanding of the genetic basis of metabolic variation and its relationship to disease development and progression
Neuroanatomical heterogeneity and homogeneity in individuals at clinical high risk for psychosis.
Individuals at Clinical High Risk for Psychosis (CHR-P) demonstrate heterogeneity in clinical profiles and outcome features. However, the extent of neuroanatomical heterogeneity in the CHR-P state is largely undetermined. We aimed to quantify the neuroanatomical heterogeneity in structural magnetic resonance imaging measures of cortical surface area (SA), cortical thickness (CT), subcortical volume (SV), and intracranial volume (ICV) in CHR-P individuals compared with healthy controls (HC), and in relation to subsequent transition to a first episode of psychosis. The ENIGMA CHR-P consortium applied a harmonised analysis to neuroimaging data across 29 international sites, including 1579 CHR-P individuals and 1243 HC, offering the largest pooled CHR-P neuroimaging dataset to date. Regional heterogeneity was indexed with the Variability Ratio (VR) and Coefficient of Variation (CV) ratio applied at the group level. Personalised estimates of heterogeneity of SA, CT and SV brain profiles were indexed with the novel Person-Based Similarity Index (PBSI), with two complementary applications. First, to assess the extent of within-diagnosis similarity or divergence of neuroanatomical profiles between individuals. Second, using a normative modelling approach, to assess the 'normativeness' of neuroanatomical profiles in individuals at CHR-P. CHR-P individuals demonstrated no greater regional heterogeneity after applying FDR corrections. However, PBSI scores indicated significantly greater neuroanatomical divergence in global SA, CT and SV profiles in CHR-P individuals compared with HC. Normative PBSI analysis identified 11 CHR-P individuals (0.70%) with marked deviation (>1.5 SD) in SA, 118 (7.47%) in CT and 161 (10.20%) in SV. Psychosis transition was not significantly associated with any measure of heterogeneity. Overall, our examination of neuroanatomical heterogeneity within the CHR-P state indicated greater divergence in neuroanatomical profiles at an individual level, irrespective of psychosis conversion. Further large-scale investigations are required of those who demonstrate marked deviation
- …