144 research outputs found
What's in the Gift? Towards a Molecular Dissection of Nuptial Feeding in a Cricket.
Journal ArticleResearch Support, Non-U.S. Gov'tResearch Support, U.S. Gov't, Non-P.H.S.Nuptial gifts produced by males and transferred to females during copulation are common in insects. Yet, their precise composition and subsequent physiological effects on the female recipient remain unresolved. Male decorated crickets Gryllodes sigillatus transfer a spermatophore to the female during copulation that is composed of an edible gift, the spermatophylax, and the ampulla that contains the ejaculate. After transfer of the spermatophore, the female detaches the spermatophylax and starts to eat it while sperm from the ampulla are evacuated into the female reproductive tract. When the female has finished consuming the spermatophylax, she detaches the ampulla and terminates sperm transfer. Hence, one simple function of the spermatophylax is to ensure complete sperm transfer by distracting the female from prematurely removing the ampulla. However, the majority of orally active components of the spermatophylax itself and their subsequent effects on female behavior have not been identified. Here, we report the first analysis of the proteome of the G. sigillatus spermatophylax and the transcriptome of the male accessory glands that make these proteins. The accessory gland transcriptome was assembled into 17,691 transcripts whilst about 30 proteins were detected within the mature spermatophylax itself. Of these 30 proteins, 18 were encoded by accessory gland encoded messages. Most spermatophylax proteins show no similarity to proteins with known biological functions and are therefore largely novel. A spermatophylax protein shows similarity to protease inhibitors suggesting that it may protect the biologically active components from digestion within the gut of the female recipient. Another protein shares similarity with previously characterized insect polypeptide growth factors suggesting that it may play a role in altering female reproductive physiology concurrent with fertilization. Characterization of the spermatophylax proteome provides the first step in identifying the genes encoding these proteins in males and in understanding their biological functions in the female recipient.Max Planck GesellschaftNational Science FoundationBBSRRoyal Societ
Microsatellites for the marsh fritillary butterfly: de novo transcriptome sequencing, and a comparison with amplified fragment length polymorphism (AFLP) markers.
Journal ArticleResearch Support, Non-U.S. Gov'tBACKGROUND: Until recently the isolation of microsatellite markers from Lepidoptera has proved troublesome, expensive and time-consuming. Following on from a previous study of Edith's checkerspot butterfly, Euphydryas editha, we developed novel microsatellite markers for the vulnerable marsh fritillary butterfly, E. aurinia. Our goal was to optimize the process in order to reduce both time and cost relative to prevailing techniques. This was accomplished by using a combination of previously developed techniques: in silico mining of a de novo assembled transcriptome sequence, and genotyping the microsatellites found there using an economic method of fluorescently labelling primers. PRINCIPAL FINDINGS: In total, we screened nine polymorphic microsatellite markers, two of which were previously published, and seven that were isolated de novo. These markers were able to amplify across geographically isolated populations throughout Continental Europe and the UK. Significant deviations from Hardy-Weinberg equilibrium were evident in some populations, most likely due to the presence of null alleles. However, we used an F(st) outlier approach to show that these markers are likely selectively neutral. Furthermore, using a set of 128 individuals from 11 populations, we demonstrate consistency in population differentiation estimates with previously developed amplified fragment length polymorphism (AFLP) markers (r = 0.68, p<0.001). SIGNIFICANCE: Rapid development of microsatellite markers for difficult taxa such as Lepidoptera, and concordant results with other putatively neutral molecular markers, demonstrate the potential of de novo transcriptional sequencing for future studies of population structure and gene flow that are desperately needed for declining species across fragmented landscapes.BBSRCOkinawa Institute for Science and Technology (OIST
Exploring the Midgut Transcriptome and Brush Border Membrane Vesicle Proteome of the Rice Stem Borer, Chilo suppressalis (Walker)
The rice stem borer, Chilo suppressalis (Walker) (Lepidoptera: Pyralidae), is one of the most detrimental pests affecting rice crops. The use of Bacillus thuringiensis (Bt) toxins has been explored as a means to control this pest, but the potential for C. suppressalis to develop resistance to Bt toxins makes this approach problematic. Few C. suppressalis gene sequences are known, which makes in-depth study of gene function difficult. Herein, we sequenced the midgut transcriptome of the rice stem borer. In total, 37,040 contigs were obtained, with a mean size of 497 bp. As expected, the transcripts of C. suppressalis shared high similarity with arthropod genes. Gene ontology and KEGG analysis were used to classify the gene functions in C. suppressalis. Using the midgut transcriptome data, we conducted a proteome analysis to identify proteins expressed abundantly in the brush border membrane vesicles (BBMV). Of the 100 top abundant proteins that were excised and subjected to mass spectrometry analysis, 74 share high similarity with known proteins. Among these proteins, Western blot analysis showed that Aminopeptidase N and EH domain-containing protein have the binding activities with Bt-toxin Cry1Ac. These data provide invaluable information about the gene sequences of C. suppressalis and the proteins that bind with Cry1Ac
A comprehensive transcriptome and immune-gene repertoire of the lepidopteran model host Galleria mellonella
<p>Abstract</p> <p>Background</p> <p>The larvae of the greater wax moth <it>Galleria mellonella </it>are increasingly used (i) as mini-hosts to study pathogenesis and virulence factors of prominent bacterial and fungal human pathogens, (ii) as a whole-animal high throughput infection system for testing pathogen mutant libraries, and (iii) as a reliable host model to evaluate the efficacy of antibiotics against human pathogens. In order to compensate for the lack of genomic information in <it>Galleria</it>, we subjected the transcriptome of different developmental stages and immune-challenged larvae to next generation sequencing.</p> <p>Results</p> <p>We performed a <it>Galleria </it>transcriptome characterization on the Roche 454-FLX platform combined with traditional Sanger sequencing to obtain a comprehensive transcriptome. To maximize sequence diversity, we pooled RNA extracted from different developmental stages, larval tissues including hemocytes, and from immune-challenged larvae and normalized the cDNA pool. We generated a total of 789,105 pyrosequencing and 12,032 high-quality Sanger EST sequences which clustered into 18,690 contigs with an average length of 1,132 bases. Approximately 40% of the ESTs were significantly similar (<it>E </it>≤ e<sup>-03</sup>) to proteins of other insects, of which 45% have a reported function. We identified a large number of genes encoding proteins with established functions in immunity related sensing of microbial signatures and signaling, as well as effector molecules such as antimicrobial peptides and inhibitors of microbial proteinases. In addition, we found genes known as mediators of melanization or contributing to stress responses. Using the transcriptomic data, we identified hemolymph peptides and proteins induced upon immune challenge by 2D-gelelectrophoresis combined with mass spectrometric analysis.</p> <p>Conclusion</p> <p>Here, we have developed extensive transcriptomic resources for <it>Galleria</it>. The data obtained is rich in gene transcripts related to immunity, expanding remarkably our knowledge about immune and stress-inducible genes in <it>Galleria </it>and providing the complete sequences of genes whose primary structure have only partially been characterized using proteomic methods. The generated data provide for the first time access to the genetic architecture of immunity in this model host, allowing us to elucidate the molecular mechanisms underlying pathogen and parasite response and detailed analyses of both its immune responses against human pathogens, and its coevolution with entomopathogens.</p
Diversity of Beetle Genes Encoding Novel Plant Cell Wall Degrading Enzymes
Plant cell walls are a heterogeneous mixture of polysaccharides and proteins that require a range of different enzymes to degrade them. Plant cell walls are also the primary source of cellulose, the most abundant and useful biopolymer on the planet. Plant cell wall degrading enzymes (PCWDEs) are therefore important in a wide range of biotechnological processes from the production of biofuels and food to waste processing. However, despite the fact that the last common ancestor of all deuterostomes was inferred to be able to digest, or even synthesize, cellulose using endogenous genes, all model insects whose complete genomes have been sequenced lack genes encoding such enzymes. To establish if the apparent “disappearance” of PCWDEs from insects is simply a sampling problem, we used 454 mediated pyrosequencing to scan the gut transcriptomes of beetles that feed on a variety of plant derived diets. By sequencing the transcriptome of five beetles, and surveying publicly available ESTs, we describe 167 new beetle PCWDEs belonging to eight different enzyme families. This survey proves that these enzymes are not only present in non-model insects but that the multigene families that encode them are apparently undergoing complex birth-death dynamics. This reinforces the observation that insects themselves, and not just their microbial symbionts, are a rich source of PCWDEs. Further it emphasises that the apparent absence of genes encoding PCWDEs from model organisms is indeed simply a sampling artefact. Given the huge diversity of beetles alive today, and the diversity of their lifestyles and diets, we predict that beetle guts will emerge as an important new source of enzymes for use in biotechnology
A comprehensive characterization of the caspase gene family in insects from the order Lepidoptera
<p>Abstract</p> <p>Background</p> <p>The cell suicide pathway of apoptosis is a necessary event in the life of multicellular organisms. It is involved in many biological processes ranging from development to the immune response. Evolutionarily conserved proteases, called caspases, play a central role in regulating apoptosis. Reception of death stimuli triggers the activation of initiator caspases, which in turn activate the effector caspases. In Lepidoptera, apoptosis is crucial in processes such as metamorphosis or defending against baculovirus infection. The discovery of p35, a baculovirus protein inhibiting caspase activity, has led to the characterization of the first lepidopteran caspase, Sf-Caspase-1. Studies on Sf-Caspase-1 mode of activation suggested that apoptosis in Lepidoptera requires a cascade of caspase activation, as demonstrated in many other species.</p> <p>Results</p> <p>In order to get insights into this gene family in Lepidoptera, we performed an extensive survey of lepidopteran-derived EST datasets. We identified 66 sequences distributed among 27 species encoding putative caspases. Phylogenetic analyses showed that Lepidoptera possess at least 5 caspases, for which we propose a unified nomenclature. According to homology to their <it>Drosophila </it>counterparts and their primary structure, we determined that Lep-Caspase-1, -2 and -3 are putative effector caspases, whereas Lep-Caspase-5 and -6 are putative initiators. The likely function of Lep-Caspase-4 remains unclear. Lep-Caspase-2 is absent from the silkworm genome and appears to be noctuid-specific, and to have arisen from a tandem duplication of the Caspase-1 gene. In the tobacco hawkmoth, 3 distinct transcripts encoding putative Caspase-4 were identified, suggesting at least 2 duplication events in this species.</p> <p>Conclusions</p> <p>The basic repertoire of five major types of caspases shared among Lepidoptera seems to be smaller than for most other groups studied to date, but gene duplication still plays a role in lineage-specific increases in diversity, just as in Diptera and mammals.</p
Comparing de novo assemblers for 454 transcriptome data
<p>Abstract</p> <p>Background</p> <p>Roche 454 pyrosequencing has become a method of choice for generating transcriptome data from non-model organisms. Once the tens to hundreds of thousands of short (250-450 base) reads have been produced, it is important to correctly assemble these to estimate the sequence of all the transcripts. Most transcriptome assembly projects use only one program for assembling 454 pyrosequencing reads, but there is no evidence that the programs used to date are optimal. We have carried out a systematic comparison of five assemblers (CAP3, MIRA, Newbler, SeqMan and CLC) to establish best practices for transcriptome assemblies, using a new dataset from the parasitic nematode <it>Litomosoides sigmodontis</it>.</p> <p>Results</p> <p>Although no single assembler performed best on all our criteria, Newbler 2.5 gave longer contigs, better alignments to some reference sequences, and was fast and easy to use. SeqMan assemblies performed best on the criterion of recapitulating known transcripts, and had more novel sequence than the other assemblers, but generated an excess of small, redundant contigs. The remaining assemblers all performed almost as well, with the exception of Newbler 2.3 (the version currently used by most assembly projects), which generated assemblies that had significantly lower total length. As different assemblers use different underlying algorithms to generate contigs, we also explored merging of assemblies and found that the merged datasets not only aligned better to reference sequences than individual assemblies, but were also more consistent in the number and size of contigs.</p> <p>Conclusions</p> <p>Transcriptome assemblies are smaller than genome assemblies and thus should be more computationally tractable, but are often harder because individual contigs can have highly variable read coverage. Comparing single assemblers, Newbler 2.5 performed best on our trial data set, but other assemblers were closely comparable. Combining differently optimal assemblies from different programs however gave a more credible final product, and this strategy is recommended.</p
Tissue-Specific Transcriptomics of the Exotic Invasive Insect Pest Emerald Ash Borer (Agrilus planipennis)
BACKGROUND: The insect midgut and fat body represent major tissue interfaces that deal with several important physiological functions including digestion, detoxification and immune response. The emerald ash borer (Agrilus planipennis), is an exotic invasive insect pest that has killed millions of ash trees (Fraxinus spp.) primarily in the Midwestern United States and Ontario, Canada. However, despite its high impact status little knowledge exists for A. planipennis at the molecular level. METHODOLOGY AND PRINCIPAL FINDINGS: Newer-generation Roche-454 pyrosequencing was used to obtain 126,185 reads for the midgut and 240,848 reads for the fat body, which were assembled into 25,173 and 37,661 high quality expressed sequence tags (ESTs) for the midgut and the fat body of A. planipennis larvae, respectively. Among these ESTs, 36% of the midgut and 38% of the fat body sequences showed similarity to proteins in the GenBank nr database. A high number of the midgut sequences contained chitin-binding peritrophin (248)and trypsin (98) domains; while the fat body sequences showed high occurrence of cytochrome P450s (85) and protein kinase (123) domains. Further, the midgut transcriptome of A. planipennis revealed putative microbial transcripts encoding for cell-wall degrading enzymes such as polygalacturonases and endoglucanases. A significant number of SNPs (137 in midgut and 347 in fat body) and microsatellite loci (317 in midgut and 571 in fat body) were predicted in the A. planipennis transcripts. An initial assessment of cytochrome P450s belonging to various CYP clades revealed distinct expression patterns at the tissue level. CONCLUSIONS AND SIGNIFICANCE: To our knowledge this study is one of the first to illuminate tissue-specific gene expression in an invasive insect of high ecological and economic consequence. These findings will lay the foundation for future gene expression and functional studies in A. planipennis
Next generation transcriptomes for next generation genomes using est2assembly
<p>Abstract</p> <p>Background</p> <p>The decreasing costs of capillary-based Sanger sequencing and next generation technologies, such as 454 pyrosequencing, have prompted an explosion of transcriptome projects in non-model species, where even shallow sequencing of transcriptomes can now be used to examine a range of research questions. This rapid growth in data has outstripped the ability of researchers working on non-model species to analyze and mine transcriptome data efficiently.</p> <p>Results</p> <p>Here we present a semi-automated platform '<it>est2assembly</it>' that processes raw sequence data from Sanger or 454 sequencing into a hybrid <it>de-novo </it>assembly, annotates it and produces GMOD compatible output, including a SeqFeature database suitable for GBrowse. Users are able to parameterize assembler variables, judge assembly quality and determine the optimal assembly for their specific needs. We used <it>est2assembly </it>to process <it>Drosophila </it>and <it>Bicyclus </it>public Sanger EST data and then compared them to published 454 data as well as eight new insect transcriptome collections.</p> <p>Conclusions</p> <p>Analysis of such a wide variety of data allows us to understand how these new technologies can assist EST project design. We determine that assembler parameterization is as essential as standardized methods to judge the output of ESTs projects. Further, even shallow sequencing using 454 produces sufficient data to be of wide use to the community. <it>est2assembly </it>is an important tool to assist manual curation for gene models, an important resource in their own right but especially for species which are due to acquire a genome project using Next Generation Sequencing.</p
Biochemical characterization and low-resolution SAXS shape of a novel GH11 exo-1,4-β-xylanase identified in a microbial consortium
Biotechnologies that aim to produce renewable fuels, chemicals, and bioproducts from residual ligno(hemi)cellulosic biomass mostly rely on enzymatic depolymerization of plant cell walls (PCW). This process requires an arsenal of diverse enzymes, including xylanases, which synergistically act on the hemicellulose, reducing the long and complex xylan chains to oligomers and simple sugars. Thus, xylanases play a crucial role in PCW depolymerization. Until recently, the largest xylanase family, glycoside hydrolase family 11 (GH11) has been exclusively represented by endo-catalytic β-1,4- and β-1,3-xylanases. Analysis of a metatranscriptome library from a microbial lignocellulose community resulted in the identification of an unusual exo-acting GH11 β-1,4-xylanase (MetXyn11). Detailed characterization has been performed on recombinant MetXyn11 including determination of its low-resolution small angle Xray scattering (SAXS) molecular envelope in solution. Our results reveal that MetXyn11 is a monomeric globular enzyme that liberates xylobiose from heteroxylans as the only product. MetXyn11 has an optimal activity in a pH range from 6 to 9 and an optimal temperature of 50 oC. The enzyme maintained above 65% of its original activity in the pH range 5 to 6 after being incubated for 72 h at 50 oC. Addition of the enzyme to a commercial enzymatic cocktail (CelicCtec3) promoted a significant increase of enzymatic hydrolysis yields of hydrothermally pretreated sugarcane bagasse (16% after 24 h of hydrolysis)
- …