23 research outputs found

    Monitoring breathing via signal strength in wireless networks

    Get PDF
    pre-printThis paper shows experimentally that standard wireless networks which measure received signal strength (RSS) can be used to reliably detect human breathing and estimate the breathing rate, an application we call "BreathTaking". We present analysis showing that, as a first order approximation, breathing induces sinusoidal variation in the measured RSS on a link, with amplitude a function of the relative amplitude and phase of the breathing-affected multipath. We show that although an individual link may not reliably detect breathing, the collective spectral content of a network of devices reliably indicates the presence and rate of breathing. We present a maximum likelihood estimator (MLE) of breathing rate, amplitude, and phase, which uses the RSS data from many links simultaneously. We show experimental results which demonstrate that reliable detection and frequency estimation is possible with 30 seconds of data, within 0.07 to 0.42 breaths per minute (bpm) RMS error in several experiments. The experiments also indicate that the use of directional antennas may improve the systems robustness to external motion

    Channel Sounding for the Masses: Low Complexity GNU 802.11b Channel Impulse Response Estimation

    Full text link
    New techniques in cross-layer wireless networks are building demand for ubiquitous channel sounding, that is, the capability to measure channel impulse response (CIR) with any standard wireless network and node. Towards that goal, we present a software-defined IEEE 802.11b receiver and CIR estimation system with little additional computational complexity compared to 802.11b reception alone. The system implementation, using the universal software radio peripheral (USRP) and GNU Radio, is described and compared to previous work. By overcoming computational limitations and performing direct-sequence spread-spectrum (DS-SS) matched filtering on the USRP, we enable high-quality yet inexpensive CIR estimation. We validate the channel sounder and present a drive test campaign which measures hundreds of channels between WiFi access points and an in-vehicle receiver in urban and suburban areas

    Erdheim-Chester disease with multisystemic involvement: a diagnostic challenge

    Get PDF
    Erdheim–Chester disease (ECD) is a rare, non-inherited, non- Langerhans form of histiocytosis of unknown origin, first described in 1930. This entity is defined by a mononuclear infiltrate consisting of lipid laden, foamy histiocytes that stain positively for CD68. Individuals affected by this disease are typically adults between their 4th and 6th decades of life. The multi systemic form of ECD is associated with significant morbidity, which may arise due to histiocytic infiltration of critical organ systems. Among the more common sites of involvement are the skeleton, central nervous system, cardiovascular system, lungs, kidneys (retroperitoneum) and skin. The most common presenting symptom of ECD is bone pain. Bilateral symmetric increased tracer uptake on 99mTc bone scintigraphy affecting the periarticular regions of the long bones is highly suggestive of ECD. However, definite diagnosis of ECD is established only once CD68(+), CD1a(−) histiocytes are identified within a biopsy specimen with aid of clinical and radiological data. Here we present a rare case of Erdheim-Chester disease in a 46 year male patient based on clinical data, radiological data, histopathological and immunohistochemistry findings
    corecore