7 research outputs found

    Effects of postdischarge high-protein oral nutritional supplements and resistance training in malnourished surgical patients: A pilot randomized controlled trial

    No full text
    The presence of malnutrition is increasingly becoming a postdischarge problem in surgical patients. We aimed to investigate whether oral nutritional supplements combined with resistance training could minimize skeletal muscle atrophy in surgical patients after discharge. This randomized controlled study was conducted at the Department of Surgery, National Hospital of Faroe Islands from 2018 to 2020. A total of 45 patients aged 37–74 years participated and were allocated to one of three groups: diet (DI; n = 13), exercise and diet (EX + DI; n = 16), or control (CON; n = 16). The intervention period lasted 8 weeks. The intervention groups received individual dietary counselling and a protein-rich oral nutritional supplement twice a day containing 22 g of protein/day. Patients in the EX + DI group were assigned to resistance training sessions. Patients in the CON group received standard care. The primary outcome was change in lean body mass (LBM). Secondary outcomes were change in body weight, handgrip strength, quality of life, surgery-related side effects, energy and protein intake, length of stay and one-year mortality. To estimate within-group changes, linear mixed models including group–time interactions as fixed effects and patients as random effects were fitted. Within-group change in LBM was 233, 813 and 78 g in the DI, EX + DI and CON groups, respectively, with no significant between-group difference (p > 0.05). Pain score declined more (p = 0.04) in the EX + DI group compared with the CON group. Body weight, handgrip strength, quality of life and surgery-related side effects did not differ between groups. At the end of study, mean cumulative weight change in the DI and EX + DI groups was 0.4% and 1.6%, respectively, whereas the CON group experienced a weight loss of −0.6%. No significant difference in primary outcome between groups was noted. However, our results indicate some benefits from exercise and nutrition for malnourished surgical patients

    Effect of angiotensin-converting enzyme inhibition on cardiovascular adaptation to exercise training

    No full text
    Angiotensin‐converting enzyme (ACE) activity may be one determinant of adaptability to exercise training, but well‐controlled studies in humans without confounding conditions are lacking. Thus, the purpose of the present study was to investigate whether ACE inhibition affects cardiovascular adaptations to exercise training in healthy humans. Healthy participants of both genders (40 ± 7 years) completed a randomized, double‐blind, placebo‐controlled trial. Eight weeks of exercise training combined with placebo (PLA, n = 25) or ACE inhibitor (ACEi, n = 23) treatment was carried out. Before and after the intervention, cardiovascular characteristics were investigated. Mean arterial blood pressure was reduced (p < 0.001) by −5.5 [−8.4; −2.6] mmHg in ACE(i), whereas the 0.7 [−2.0; 3.5] mmHg fluctuation in PLA was non‐significant. Maximal oxygen uptake increased (p < 0.001) irrespective of ACE inhibitor treatment by 13 [8; 17] % in ACE(i) and 13 [9; 17] % in PLA. In addition, skeletal muscle endurance increased (p < 0.001) to a similar extent in both groups, with magnitudes of 82 [55; 113] % in ACE(i) and 74 [48; 105] % in PLA. In contrast, left atrial volume decreased (p < 0.05) by −9 [−16; −2] % in ACE(i), but increased (p < 0.01) by 14 [5; 23] % in PLA. Total hemoglobin mass was reduced (p < 0.01) by −3 [−6; −1] % in ACE(i), while a non‐significant numeric increase of 2 [−0.4; 4] % existed in PLA. The lean mass remained constant in ACE(i) but increased (p < 0.001) by 3 [2; 4] % in PLA. In healthy middle‐aged adults, 8 weeks of high‐intensity exercise training increases maximal oxygen uptake and skeletal muscle endurance irrespective of ACE inhibitor treatment. However, ACE inhibitor treatment counteracts exercise training‐induced increases in lean mass and left atrial volume. ACE inhibitor treatment compromises total hemoglobin mass
    corecore