7,339 research outputs found
A Possible Constraint on Regional Precipitation Intensity Changes under Global Warming
Changes in daily precipitation versus intensity under a global warming scenario in two regional climate simulations of the United States show a well-recognized feature of more intense precipitation. More important, by resolving the precipitation intensity spectrum, the changes show a relatively simple pattern for nearly all regions and seasons examined whereby nearly all high-intensity daily precipitation contributes a larger fraction of the total precipitation, and nearly all low-intensity precipitation contributes a reduced fraction. The percentile separating relative decrease from relative increase occurs around the 70th percentile of cumulative precipitation, irrespective of the governing precipitation processes or which model produced the simulation. Changes in normalized distributions display these features much more consistently than distribution changes without normalization.
Further analysis suggests that this consistent response in precipitation intensity may be a consequence of the intensity spectrum’s adherence to a gamma distribution. Under the gamma distribution, when the total precipitation or number of precipitation days changes, there is a single transition between precipitation rates that contribute relatively more to the total and rates that contribute relatively less. The behavior is roughly the same as the results of the numerical models and is insensitive to characteristics of the baseline climate, such as average precipitation, frequency of rain days, and the shape parameter of the precipitation’s gamma distribution. Changes in the normalized precipitation distribution give a more consistent constraint on how precipitation intensity may change when climate changes than do changes in the nonnormalized distribution. The analysis does not apply to extreme precipitation for which the theory of statistical extremes more likely provides the appropriate description
External-field-induced tricritical point in a fluctuation-driven nematic-smectic-A transition
We study theoretically the effect of an external field on the
nematic-smectic-A (NA) transition close to the tricritical point, where
fluctuation effects govern the qualitative behavior of the transition. An
external field suppresses nematic director fluctuations, by making them
massive. For a fluctuation-driven first-order transition, we show that an
external field can drive the transition second-order. In an appropriate liquid
crystal system, we predict the required magnetic field to be of order 10 T. The
equivalent electric field is of order .Comment: revtex, 4 pages, 1 figure; revised version, some equations have been
modifie
Re-entrance of the metallic conductance in a mesoscopic proximity superconductor
We present an experimental study of the diffusive transport in a normal metal
near a superconducting interface, showing the re-entrance of the metallic
conductance at very low temperature. This new mesoscopic regime comes in when
the thermal coherence length of the electron pairs exceeds the sample size.
This re-entrance is suppressed by a bias voltage given by the Thouless energy
and can be strongly enhanced by an Aharonov Bohm flux. Experimental results are
well described by the linearized quasiclassical theory.Comment: improved version submitted to Phys. Rev. lett., 4 pages, 5 included
epsf figure
The Affective Impact of Financial Skewness on Neural Activity and Choice
Few finance theories consider the influence of “skewness” (or large and asymmetric but unlikely outcomes) on financial choice. We investigated the impact of skewed gambles on subjects' neural activity, self-reported affective responses, and subsequent preferences using functional magnetic resonance imaging (FMRI). Neurally, skewed gambles elicited more anterior insula activation than symmetric gambles equated for expected value and variance, and positively skewed gambles also specifically elicited more nucleus accumbens (NAcc) activation than negatively skewed gambles. Affectively, positively skewed gambles elicited more positive arousal and negatively skewed gambles elicited more negative arousal than symmetric gambles equated for expected value and variance. Subjects also preferred positively skewed gambles more, but negatively skewed gambles less than symmetric gambles of equal expected value. Individual differences in both NAcc activity and positive arousal predicted preferences for positively skewed gambles. These findings support an anticipatory affect account in which statistical properties of gambles—including skewness—can influence neural activity, affective responses, and ultimately, choice
Strategies and interventions for healthy adolescent growth, nutrition, and development
Adolescence is a pivotal point in the life course, characterised by transformative physical, cognitive, and emotional growth, an openness to change, and a drive to reshape the social environment. It offers unique opportunities to adopt changes in diet and physical activity that can persist into later life. Yet pre-existing nutritional problems, including micronutrient deficiencies, food insecurity, and poor-quality diets, persist at the same time as adolescents face the rapid emergence of an obesity epidemic. Adolescent growth and nutrition has been largely overlooked in intervention and policy research. Most intervention studies have emphasised micronutrient supplementation, with few taking into account the multiple drivers of adolescent diets. This Series paper highlights that effective interventions and policies will need to cut across sectors; be supported by multifaceted and multilevel policy; and extend across education, health, food systems, social protection, and digital media. Better data standardisation and systems will be essential in coordinating and monitoring these responses. In a context of shifts in planetary ecosystems and commercial drivers, resilient food systems will need to both ensure access to healthy and affordable foods and provide the infrastructure and incentives for continuing physical activity. Intergenerational partnerships with young people will be essential in bringing about transformative change and ensuring that food policies reflect their needs and aspirations
Pseudogap effects induced by resonant pair scattering
We demonstrate how resonant pair scattering of correlated electrons above T_c
can give rise to pseudogap behavior. This resonance in the scattering T-matrix
appears for superconducting interactions of intermediate strength, within the
framework of a simple fermionic model. It is associated with a splitting of the
single peak in the spectral function into a pair of peaks separated by an
energy gap. Our physical picture is contrasted with that derived from other
T-matrix schemes, with superconducting fluctuation effects, and with preformed
pair (boson-fermion) models. Implications for photoemission and tunneling
experiments in the cuprates are discussed.Comment: REVTeX3.0; 4 pages, 4 EPS figures (included
- …