232 research outputs found

    A next-generation inverse-geometry spallation-driven ultracold neutron source

    Full text link
    The physics model of a next-generation spallation-driven high-current ultracold neutron (UCN) source capable of delivering an extracted UCN rate of around an-order-of-magnitude higher than the strongest proposed sources, and around three-orders-of-magnitude higher than existing sources, is presented. This UCN-current-optimized source would dramatically improve cutting-edge UCN measurements that are currently statistically limited. A novel "Inverse Geometry" design is used with 40 L of superfluid 4^4He (He-II), which acts as a converter of cold neutrons (CNs) to UCNs, cooled with state-of-the-art sub-cooled cryogenic technology to \sim1.6 K. Our design is optimized for a 100 W maximum heat load constraint on the He-II and its vessel. In our geometry, the spallation target is wrapped symmetrically around the UCN converter to permit raster scanning the proton beam over a relatively large volume of tungsten spallation target to reduce the demand on the cooling requirements, which makes it reasonable to assume that water edge-cooling only is sufficient. Our design is refined in several steps to reach PUCN=2.1×109/P_{UCN}=2.1\times10^9\,/s under our other restriction of 1 MW maximum available proton beam power. We then study effects of the He-II scattering kernel as well as reductions in PUCNP_{UCN} due to pressurization to reach PUCN=1.8×109/P_{UCN}=1.8\times10^9\,/s. Finally, we provide a design for the UCN extraction system that takes into account the required He-II heat transport properties and implementation of a He-II containment foil that allows UCN transmission. We estimate a total useful UCN current from our source of Ruse=5×108/R_{use}=5\times10^8\,/s from a 18 cm diameter guide 5 m from the source. Under a conservative "no return" approximation, this rate can produce an extracted density of >1×104/>1\times10^4\,/cm3^3 in <<1000~L external experimental volumes with a 58^{58}Ni (335 neV) cut-off potential.Comment: Submitted to Journal of Applied Physic

    Measurement of the half-life of the T=12\frac{1}{2} mirror decay of 19^{19}Ne and its implication on physics beyond the standard model

    Get PDF
    The 12+12+\frac{1}{2}^+ \rightarrow \frac{1}{2}^+ superallowed mixed mirror decay of 19^{19}Ne to 19^{19}F is excellently suited for high precision studies of the weak interaction. However, there is some disagreement on the value of the half-life. In a new measurement we have determined this quantity to be T1/2T_{1/2} = 17.2832±0.0051(stat)17.2832 \pm 0.0051_{(stat)} ±0.0066(sys)\pm 0.0066_{(sys)} s, which differs from the previous world average by 3 standard deviations. The impact of this measurement on limits for physics beyond the standard model such as the presence of tensor currents is discussed.Comment: 5 pages, 3 figures, 1 tabl

    Search for the Neutron Decay n\rightarrow X+γ\gamma where X is a dark matter particle

    Get PDF
    In a recent paper submitted to Physical Review Letters, Fornal and Grinstein have suggested that the discrepancy between two different methods of neutron lifetime measurements, the beam and bottle methods can be explained by a previously unobserved dark matter decay mode, n\rightarrow X+γ\gamma where X is a dark matter particle. We have performed a search for this decay mode over the allowed range of energies of the monoenergetic gamma ray for X to be a dark matter particle. We exclude the possibility of a sufficiently strong branch to explain the lifetime discrepancy with greater than 4 sigma confidence.Comment: 6 pages 3 figure

    Status of the UCNτ experiment

    Get PDF
    The neutron is the simplest nuclear system that can be used to probe the structure of the weak interaction and search for physics beyond the standard model. Measurements of neutron lifetime and β-decay correlation coefficients with precisions of 0.02% and 0.1%, respectively, would allow for stringent constraints on new physics. The UCNτ experiment uses an asymmetric magneto-gravitational UCN trap with in situ counting of surviving neutrons to measure the neutron lifetime, τ_n = 877.7s (0.7s)_(stat) (+0.4/−0.2s)_(sys). We discuss the recent result from UCNτ, the status of ongoing data collection and analysis, and the path toward a 0.25 s measurement of the neutron lifetime with UCNτ

    A boron-coated CCD camera for direct detection of Ultracold Neutrons (UCN)

    Full text link
    A new boron-coated CCD camera is described for direct detection of ultracold neutrons (UCN) through the capture reactions 10^{10}B (n,α\alpha0γ\gamma)7^7Li (6%) and 10^{10}B(n,α\alpha1γ\gamma)7^7Li (94%). The experiments, which extend earlier works using a boron-coated ZnS:Ag scintillator, are based on direct detections of the neutron-capture byproducts in silicon. The high position resolution, energy resolution and particle ID performance of a scientific CCD allows for observation and identification of all the byproducts α\alpha, 7^7Li and γ\gamma (electron recoils). A signal-to-noise improvement on the order of 104^4 over the indirect method has been achieved. Sub-pixel position resolution of a few microns is demonstrated. The technology can also be used to build UCN detectors with an area on the order of 1 m2^2. The combination of micrometer scale spatial resolution, few electrons ionization thresholds and large area paves the way to new research avenues including quantum physics of UCN and high-resolution neutron imaging and spectroscopy.Comment: 10 pages, 8 figure

    First Measurement of the Neutron β\beta-Asymmetry with Ultracold Neutrons

    Get PDF
    We report the first measurement of angular correlation parameters in neutron β\beta-decay using polarized ultracold neutrons (UCN). We utilize UCN with energies below about 200 neV, which we guide and store for 30\sim 30 s in a Cu decay volume. The μnB\vec{\mu}_n \cdot \vec{B} potential of a static 7 T field external to the decay volume provides a 420 neV potential energy barrier to the spin state parallel to the field, polarizing the UCN before they pass through an adiabatic fast passage (AFP) spin-flipper and enter a decay volume, situated within a 1 T, 2×2π2 \times 2\pi superconducting solenoidal spectrometer. We determine a value for the β\beta-asymmetry parameter A0A_0, proportional to the angular correlation between the neutron polarization and the electron momentum, of A0=0.1138±0.0051A_0 = -0.1138 \pm 0.0051.Comment: 4 pages, 2 figures, 1 table, submitted to Phys. Rev. Let

    All in the family: partisan disagreement and electoral mobilization in intimate networks—a spillover experiment

    Get PDF
    We advance the debate about the impact of political disagreement in social networks on electoral participation by addressing issues of causal inference common in network studies, focusing on voters' most important context of interpersonal influence: the household. We leverage a randomly assigned spillover experiment conducted in the United Kingdom, combined with a detailed database of pretreatment party preferences and public turnout records, to identify social influence within heterogeneous and homogeneous partisan households. Our results show that intrahousehold mobilization effects are larger as a result of campaign contact in heterogeneous than in homogeneous partisan households, and larger still when the partisan intensity of the message is exogenously increased, suggesting discussion rather than behavioral contagion as a mechanism. Our results qualify findings from influential observational studies and suggest that within intimate social networks, negative correlations between political heterogeneity and electoral participation are unlikely to result from political disagreement
    corecore