183 research outputs found

    Lactoferrin Binding to SARS-CoV-2 Spike Glycoprotein Blocks Pseudoviral Entry and Relieves Iron Protein Dysregulation in Several In Vitro Models

    Get PDF
    SARS-CoV-2 causes COVID-19, a predominantly pulmonary disease characterized by a burst of pro-inflammatory cytokines and an increase in free iron. The viral glycoprotein Spike mediates fusion to the host cell membrane, but its role as a virulence factor is largely unknown. Recently, the antiviral activity of lactoferrin against SARS-CoV-2 was demonstrated in vitro and shown to occur via binding to cell surface receptors, and its putative interaction with Spike was suggested by in silico analyses. We investigated the anti-SARS-CoV-2 activity of bovine and human lactoferrins in epithelial and macrophagic cells using a Spike-decorated pseudovirus. Lactoferrin inhibited pseudoviral fusion and counteracted the deleterious effects of Spike on iron and inflammatory homeostasis by restoring basal levels of iron-handling proteins and of proinflammatory cytokines IL-1β and IL-6. Using pull-down assays, we experimentally proved for the first time that lactoferrin binds to Spike, immediately suggesting a mechanism for the observed effects. The contribution of transferrin receptor 1 to Spike-mediated cell fusion was also experimentally demonstrated. In silico analyses showed that lactoferrin interacts with transferrin receptor 1, suggesting a multifaceted mechanism of action for lactoferrin. Our results give hope for the use of bovine lactoferrin, already available as a nutraceutical, as an adjuvant to standard therapies in COVID-19

    Lactoferrin prevents LPS-induced decrease of the iron exporter ferroportin in human monocytes/macrophages.

    Get PDF
    Iron balance is tightly linked to inflammation and it has been demonstrated that many proteins involved in cellular iron management are up- or down-regulated by inflammatory stimuli, ultimately leading to iron retention in the reticuloendothelial system. Ferroportin is a key player in maintenance of correct iron homeostasis, because it is the only known mammalian cellular iron exporter. In this work we show that incubation of THP-1 monocytes/macrophages with lactoferrin prevents the LPS-induced decrease of ferroportin by reducing secretion of IL-6. © 2014 Springer Science+Business Media New York.Iron balance is tightly linked to inflammation and it has been demonstrated that many proteins involved in cellular iron management are up- or downregulated by inflammatory stimuli, ultimately leading to iron retention in the reticuloendothelial system. Ferroportin is a key player in maintenance of correct iron homeostasis, because it is the only known mammalian cellular iron exporter. In this work we show that incubation of THP-1 monocytes/macrophages with lactoferrin prevents the LPS-induced decrease of ferroportin by reducing secretion of IL-6

    Does the Underground Economy Hold Back Financial Deepening? Evidence from the Italian Credit Market

    Full text link

    Bacterial laccases: some recent advances and applications

    Get PDF
    Laccases belong to the large family of multi-copper oxidases (MCOs) that couple the one-electron oxidation of substrates with the four-electron reduction of molecular oxygen to water. Because of their high relative non-specific oxidation capacity particularly on phenols and aromatic amines as well as the lack of requirement for expensive organic cofactors, they have found application in a large number of biotechnological fields. The vast majority of studies and applications were performed using fungal laccases, but bacterial laccases show interesting properties such as optimal temperature above 50 °C, optimal pH at the neutral to alkaline range, thermal and chemical stability and increased salt tolerance. Additionally, bacterial systems benefit from a wide range of molecular biology tools that facilitates their engineering and achievement of high yields of protein production and set-up of cost-effective bioprocesses. In this review we will provide up-to-date information on the distribution and putative physiological role of bacterial laccases and highlight their distinctive structural and biochemical properties, discuss the key role of copper in the biochemical properties, discuss thermostability determinants and, finally, review biotechnological applications with a focus on catalytic mechanisms on phenolics and aromatic amines.info:eu-repo/semantics/publishedVersio

    Bank competition and firm creation

    No full text
    Consiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7, Rome / CNR - Consiglio Nazionale delle RichercheSIGLEITItal

    The interaction between face-to-face and electronic delivery: the case of the Italian banking industry

    No full text
    Consiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7, Rome / CNR - Consiglio Nazionale delle RichercheSIGLEITItal

    Biophysical characterization of the complex between the iron-responsive transcription factor Fep1 and DNA

    No full text
    Fep1 is an iron-responsive GATA-type transcriptional repressor present in numerous fungi. The DNA-binding domain of this protein is characterized by the presence of two zinc fingers of the Cys2-Cys2 type and a Cys-X5-Cys-X8-Cys-X2-Cys motif located between the two zinc fingers, that is involved in binding of a [2Fe-2S] cluster. In this work, biophysical characterization of the DNA-binding domain of Pichia pastoris Fep1 and of the complex of the protein with cognate DNA has been undertaken. The results obtained by analytical ultracentrifugation sedimentation velocity, small-angle X-ray scattering and differential scanning calorimetry indicate that Fep1 is a natively unstructured protein that is able to bind DNA forming 1:1 and 2:1 complexes more compact than the individual partners. Complex formation takes place independently of the presence of a stoichiometric [2Fe-2S] cluster, suggesting that the cluster may play a role in recruiting other protein(s) required for regulation of transcription in response to changes in intracellular iron levels
    • …
    corecore