7 research outputs found

    Kinetic modeling and simulation of bio-methanol process from biogas by using aspen plus

    Get PDF
    A process of bio-methanol from biogas was studied by modifying kinetic model of reaction’s Richardson and Paripatyadar comparing with laboratory data. Bio-methanol process consists of 2 steps: reforming reaction (at atmospheric pressure, temperature 500 - 750 °C) and methanol synthesis (at constant pressure 40 bar, temperature 140 - 280 °C). The reaction model of each step was individual simulated. Next both steps were integrated, then they were simulated using ASPEN PLUS software. This work investigated the optimum operating condition and predicted result of both reactions. The developing model was obtained, then it was applied for ten thousand liters per day of methanol. The simulation result received from reforming reaction showed increasing temperature effect to rising in CH4 and CO2 conversion and relating with laboratory result. The optimum condition of methanol synthesis is temperature 200 °C under constant pressure 40 bar

    Effect of LNR-g-MMA on the Mechanical Properties and Lifetime Estimation of PLA/PP Blends

    No full text
    Polylactide (PLA) polymer, polypropylene (PP) polymer, and a PLA/PP (70:30 wt%) blend, with liquid natural rubber−graft−methy methacrylate (LNR−g−MMA) of 0.0, 2.5, 5.0, and 10.0 phr as compatibilizers, were prepared by internal mixing and compression molding. The effect of LNR-g-MMA content on the morphology, mechanical properties, water absorption, thermal degradation, and a lifetime of blends based on PLA and PP was investigated. Scanning electron microscopy (SEM) revealed that the PLA/PP blend underwent phase separation, and the presence of LNR−g−MMA in the PLA/PP blend showed a more homogenized and refined blend morphology. Hence, the addition of LNR−g−MMA was used as a compatibilizer to induce miscibility in the PLA/PP blend. The values of tensile strength, elongation at break, and impact strength of the polymer blends increased, whereas water absorption values decreased with increased LNR−g−MMA content. Thermal degradation kinetics was studied over a temperature range of 50–800 °C with multiple heating rates. The results demonstrated that the thermal stability of blends without LNR-g-MMA was greater than that of blends with LNR−g−MMA and that the thermal stability decreased with increasing LNR−g−MMA content. The activation energy (Ea) was calculated by using the Kissinger–Akahira–Sunose method. The Ea value of PLA was much lower than that of PP, and incorporating PP in the PLA matrix increased the Ea. The addition of LNR−g−MMA to the PLA/PP blend decreased the Ea. The lifetime of PLA/PP blends was reduced with the addition of LNR−g−MMA

    Study on Degradation of Natural Rubber Latex Using Hydrogen Peroxide and Sodium Nitrite in the Presence of Formic Acid

    No full text
    Liquid natural rubber (LNR), a depolymerized natural rubber (NR) consisting of shorter chains, was prepared via oxidative degradation using NaNO2 and H2O2 degrading agents in the presence of HCOOH. The influence of reagent concentrations, temperature, and reaction time on the number-average molecular weight (Mn) was studied. Results showed the higher concentration of H2O2 and HCOOH employed faster degradative rates. However, a higher concentration of NaNO2 decreased the Mn reduction. Prolonged reaction time and high temperature resulted in a product with low Mn. FTIR spectra indicated the synthesized LNR contained hydroxyl end groups resulting from the breaking of the NR chains at an acidic pH, whereas a carboxyl terminated LNR was formed at an alkaline pH. SEM micrographs showed the latex particles of LNR were spherical and smaller compared to NR. The experimental results showed the reaction orders of [H2O2], [HCOOH], and [NaNO2] were 1.58, 0.79, and −0.65, respectively. In addition, the pre-exponential factor and activation energy were 1.04 × 109 M−1.72 t−1 and 78.66 kJ/mol, respectively. Based on TGA analysis, the thermal stability of the rubber depended on its Mn. The LNR containing functional end groups exhibited thermal instability and could be a starting material for many applications

    Improving Biomethanol Synthesis via the Addition of Extra Hydrogen to Biohydrogen Using a Reverse Water–Gas Shift Reaction Compared with Direct Methanol Synthesis

    No full text
    Conventionally, methanol is derived from a petroleum base and natural gas, but biomethanol is obtained from biobased sources, which can provide a good alternative for commercial methanol synthesis. The fermentation of molasses to produce biomethanol via the production of biohydrogen (H2 and CO2) was studied. Molasses concentrations of 20, 30, or 40 g/L with the addition of 0, 0.01, or 0.1 g/L of trace elements (TEs) (NiCl2 and FeSO4·7H2O) were investigated, and the proper conditions were a 30 g/L molasses solution combined with 0.01 g/L of TEs. H2/CO2 ratios of 50/50% (v/v), 60/40% (v/v), and 70/30% (v/v) with a constant feed rate of 60 g/h for CO2 conversion via methanol synthesis (MS) and the reverse water–gas shift (RWGS) reaction were studied. MS at temperatures of 170, 200, and 230 °C with a Cu/ZnO/Al2O3 catalyst and pressure of 40 barg was studied. Increasing the H2/CO2 ratio increased the maximum methanol product rate, and the maximum H2/CO2 ratio of 70/30% (v/v) resulted in methanol production rates of 13.15, 17.81, and 14.15 g/h, respectively. The optimum temperature and methanol purity were 200 °C and 62.9% (wt). The RWGS was studied at temperatures ranging from 150 to 550 °C at atm pressure with the same catalyst and feed. Increasing the temperature supported CO generation, which remained unchanged at 21 to 23% at 500 to 550 °C. For direct methanol synthesis (DMS), there was an initial methanol synthesis (MS) reaction followed by a second methanol synthesis (MS) reaction, and for indirect methanol synthesis (IMS), there was a reverse water–gas shift (RWGS) reaction followed by methanol synthesis (MS). For pathway 1, DMS (1st MS + 2nd MS), and pathway 2, IMS (1st RWGS + 2nd MS), the same optimal H2/CO2 ratio at 60/40% (v/v) or 1.49/1 (mole ratio) was determined, and methanol production rates of 1.04 (0.033) and 1.0111 (0.032) g/min (mol/min), methanol purities of 75.91% (wt) and 97.98% (wt), and CO2 consumptions of 27.32% and 57.25%, respectively, were achieved

    Kinetic modeling and simulation of bio-methanol process from biogas by using aspen plus

    No full text
    A process of bio-methanol from biogas was studied by modifying kinetic model of reaction’s Richardson and Paripatyadar comparing with laboratory data. Bio-methanol process consists of 2 steps: reforming reaction (at atmospheric pressure, temperature 500 - 750 °C) and methanol synthesis (at constant pressure 40 bar, temperature 140 - 280 °C). The reaction model of each step was individual simulated. Next both steps were integrated, then they were simulated using ASPEN PLUS software. This work investigated the optimum operating condition and predicted result of both reactions. The developing model was obtained, then it was applied for ten thousand liters per day of methanol. The simulation result received from reforming reaction showed increasing temperature effect to rising in CH4 and CO2 conversion and relating with laboratory result. The optimum condition of methanol synthesis is temperature 200 °C under constant pressure 40 bar

    Comparison of molasses conversion to biomethanol by biohydrogen pathway with biogas route in engineering and cost assessment: Thailand case

    No full text
    Biomethanol is a significant chemical in biochemicals and biofuels. Molasses is interested in producing biogas and biohydrogen for biomethanol. Biohydrogen, Enterobacter aerogenes digested molasses obtaining value organic chemicals and biohydrogen in appropriate ratios of H2/CO2 then transforming to H2/CO by RWGS. Biogas was converted to syngas then methanol synthesis. The biogas pathway was 4 steps and it was appropriate for sailing single product as biomethanol. The biohydrogen pathway was 3 steps and obtained income both valuable substances and biomethanol. Operating expenditure for 1 kg methanol by biohydrogen experiment and theory were 4.4148 and 4.0912 USD comparing with biogas 0.3446 USD based on commercial methanol price 0.449 USD/kg. The sale prices per kg of biomethanol by biohydrogen were 6.7243 USD (Exp.) and 5.7500 USD (Theory) comparing with biomethanol sailing from biogas pathway at 0.4486 USD. Margin caps were 30.19%, 39.66%, and 40.55% for biogas pathway, biohydrogen experiment and theory route respectively
    corecore