1,505 research outputs found

    Denervated Schwann cells attract macrophages by secretion of leukemia inhibitory factor (LIF) and monocyte chemoattractant protein-1 in a process regulated by interleukin-6 and LIF

    Get PDF
    Injury to peripheral nerves results in the infiltration of immune cells, which remove axonal- and myelin-derived material. Schwann cells could play a key role in this process by regulating macrophage infiltration. We show here that medium conditioned by primary denervated Schwann cells or the Schwannoma cell line RN22 produces chemotactic activity for macrophages. The presence of blocking antibodies to macrophage chemoattractant protein-1 (MCP-1) or leukemia inhibitory factor (LIF) reduced this activity to similar to35 and 65% of control levels, respectively, and only 15% remained in the presence of both antibodies. The presence of chemotactic LIF in Schwann cell-conditioned medium was confirmed by using cells from lif-/- mice. Although interleukin-6 (IL-6) is not itself a chemotactic factor, we found that medium from il-6-/- nerves showed only 40% of the activity secreted by wild-type nerves. Furthermore, IL-6 rapidly induced LIF mRNA in primary Schwann cells, and LIF rapidly induced MCP-1 mRNA expression. Treatment of RN22 Schwannoma cells with IL-6 or LIF enhanced the secretion of the chemotactic activity of these cells.These observations show that Schwann cells attract macrophages by secreting MCP-1 and LIF. They also provide evidence for an autocrine-signaling cascade involving IL-6, LIF, and MCP-1, which amplifies the Schwann cell-derived chemotactic signals gradually, in agreement with the delayed entry of macrophages to injured nerves

    Charge Ordering and Ferroelectricity in Half-doped Manganites

    Full text link
    By means of density-functional simulations for half-doped manganites, such as pseudocubic Pr0.5Ca0.5MnO3 and bilayer PrCa2Mn2O7, we discuss the occurrence of ferroelectricity and we explore its crucial relation to the crystal structure and to peculiar charge/spin/orbital ordering effects. In pseudocubic Pr0.5Ca0.5MnO3, ferroelectricity is induced in the Zener polaron type structure, where Mn ions are dimerized. In marked contrast, in bilayer PrCa2Mn2O7, it is the displacements of apical oxygens bonded to either Mn3+ or Mn4+ ions that play a key role in the rising of ferroelectricity. Importantly, local dipoles due to apical oxygens are also intimately linked to charge and orbital ordering patterns in MnO2 planes, which in turn contribute to polarization. Finally, an important outcome of our work consists in proposing Born effective charges as a valid mean to quantify charge disproportionation effects, in terms of anisotropy and size of electronic clouds around Mn ions.Comment: 5 pages, 2 figures, submitted for publicatio

    Mycosis fungoides bullosa: a case report and review of the literature

    Get PDF
    Introduction: Mycosis fungoides, the most common type of cutaneous T-cell lymphoma, can manifest in a variety of clinical and histological forms. Bulla formation is an uncommon finding in mycosis fungoides and only approximately 20 cases have been reported in the literature. Case presentation: We present a case of rapidly progressive mycosis fungoides in a 68-year-old Caucasian man who initially presented with erythematous plaques characterised by blister formation. Conclusion: Although mycosis fungoides bullosa is extremely rare, it has to be regarded as an important clinical subtype of cutaneous T-cell lymphoma. Mycosis fungoides bullosa represents a particularly aggressive form of mycosis fungoides and is associated with a poor prognosis. The rapid disease progression in our patient confirms bulla formation as an adverse prognostic sign in cutaneous T-cell lymphoma

    Holographic formula for the determinant of the scattering operator in thermal AdS

    Full text link
    A 'holographic formula' expressing the functional determinant of the scattering operator in an asymptotically locally anti-de Sitter(ALAdS) space has been proposed in terms of a relative functional determinant of the scalar Laplacian in the bulk. It stems from considerations in AdS/CFT correspondence of a quantum correction to the partition function in the bulk and the corresponding subleading correction at large N on the boundary. In this paper we probe this prediction for a class of quotients of hyperbolic space by a discrete subgroup of isometries. We restrict to the simplest situation of an abelian group where the quotient geometry describes thermal AdS and also the non-spinning BTZ instanton. The bulk computation is explicitly done using the method of images and the answer can be encoded in a (Patterson-)Selberg zeta-function.Comment: 11 pages, published JPA versio

    Sexual Arousal Patterns of Identical Twins with Discordant Sexual Orientations

    Get PDF
    Genetically identical twins can differ in their self-reported sexual orientations. However, whether the twins’ subjective reports reflect valid differences in their sexual orientations is unknown. Measures of sexual orientation, which are free of the limitations of self-report, include genital arousal and pupil dilation while viewing sexual stimuli depicting men or women. We examined these responses in 6 male twin pairs and 9 female twin pairs who reported discordant sexual orientations. Across measures, heterosexual male twins responded more strongly to women than to men. Their homosexual co-twins showed an opposite pattern. Heterosexual female twins responded equally to both sexes, whereas their homosexual co-twins responded somewhat more to women than men. These differences within pairs were similar to differences between unrelated heterosexual and homosexual males and females. Our study provides physiological evidence confirming twins’ discordant sexual orientations, thereby supporting the importance of the non-shared environment for the development of sexual orientation and sexual arousal

    Expression of Toll-Like Receptors in the Developing Brain

    Get PDF
    Toll-like receptors (TLR) are key players of the innate and adaptive immune response in vertebrates. The original protein Toll in Drosophila melanogaster regulates both host defense and morphogenesis during development. Making use of real-time PCR, in situ hybridization, and immunohistochemistry we systematically examined the expression of TLR1–9 and the intracellular adaptor molecules MyD88 and TRIF during development of the mouse brain. Expression of TLR7 and TLR9 in the brain was strongly regulated during different embryonic, postnatal, and adult stages. In contrast, expression of TLR1–6, TLR8, MyD88, and TRIF mRNA displayed no significant changes in the different phases of brain development. Neurons of various brain regions including the neocortex and the hippocampus were identified as the main cell type expressing both TLR7 and TLR9 in the developing brain. Taken together, our data reveal specific expression patterns of distinct TLRs in the developing mouse brain and lay the foundation for further investigation of the pathophysiological significance of these receptors for developmental processes in the central nervous system of vertebrates

    Effects of maternal immune activation on gene expression patterns in the fetal brain

    Get PDF
    We are exploring the mechanisms underlying how maternal infection increases the risk for schizophrenia and autism in the offspring. Several mouse models of maternal immune activation (MIA) were used to examine the immediate effects of MIA induced by influenza virus, poly(I:C) and interleukin IL-6 on the fetal brain transcriptome. Our results indicate that all three MIA treatments lead to strong and common gene expression changes in the embryonic brain. Most notably, there is an acute and transient upregulation of the α, β and γ crystallin gene family. Furthermore, levels of crystallin gene expression are correlated with the severity of MIA as assessed by placental weight. The overall gene expression changes suggest that the response to MIA is a neuroprotective attempt by the developing brain to counteract environmental stress, but at a cost of disrupting typical neuronal differentiation and axonal growth. We propose that this cascade of events might parallel the mechanisms by which environmental insults contribute to the risk of neurodevelopmental disorders such as schizophrenia and autism

    Neonatal anthropometry: a tool to evaluate the nutritional status and predict early and late risks

    Get PDF
    Neonatal anthropometry is an inexpensive, noninvasive and convenient tool for bedside evaluation, especially in sick and fragile neonates. Anthropometry can be used in neonates as a tool for several purposes: diagnosis of foetal malnutrition and prediction of early postnatal complications; postnatal assessment of growth, body composition and nutritional status; prediction of long-term complications including metabolic syndrome; assessment of dysmorphology; and estimation of body surface. However, in this age group anthropometry has been notorious for its inaccuracy and the main concern is to make validated indices available. Direct measurements, such as body weight, length and body circumferences are the most commonly used measurements for nutritional assessment in clinical practice and in field studies. Body weight is the most reliable anthropometric measurement and therefore is often used alone in the assessment of the nutritional status, despite not reflecting body composition. Derived indices from direct measurements have been proposed to improve the accuracy of anthropometry. Equations based on body weight and length, mid-arm circumference/head circumference ratio, and upper-arm cross-sectional areas are among the most used derived indices to assess nutritional status and body proportionality, even though these indices require further validation for the estimation of body composition in neonates
    corecore