29 research outputs found
Gamma-ray production from resonant betatron oscillations of accelerated electrons in a plasma wake
The laser-plasma wakefield accelerator is a novel ultra-compact particle accelerator. A very intense laser pulse focused onto plasma can excites plasma density waves. Electrons surfing these waves can be accelerated to very high energies with unprecedented accelerating gradients in excess of 1 GV/cm. While accelerating, electrons undergo transverse betatron oscillations and emit synchrotron-like x-ray radiation into a narrow on-axis cone, which is enhanced when electrons interact with the electromagnetic field of the laser. In this case, the laser can resonantly drive the electron motion, lading to direct laser acceleration. This occurs when the betatron frequency matches the Doppler down-shifted frequency of the laser. As a consequence, the number of photons emitted is strongly enhanced and the critical photon energy is increases to 100’s of ke
X-ray harmonic comb from relativistic electron spikes
X-ray devices are far superior to optical ones for providing nanometre
spatial and attosecond temporal resolutions. Such resolution is indispensable
in biology, medicine, physics, material sciences, and their applications. A
bright ultrafast coherent X-ray source is highly desirable, for example, for
the diffractive imaging of individual large molecules, viruses, or cells. Here
we demonstrate experimentally a new compact X-ray source involving high-order
harmonics produced by a relativistic-irradiance femtosecond laser in a gas
target. In our first implementation using a 9 Terawatt laser, coherent soft
X-rays are emitted with a comb-like spectrum reaching the 'water window' range.
The generation mechanism is robust being based on phenomena inherent in
relativistic laser plasmas: self-focusing, nonlinear wave generation
accompanied by electron density singularities, and collective radiation by a
compact electric charge. The formation of singularities (electron density
spikes) is described by the elegant mathematical catastrophe theory, which
explains sudden changes in various complex systems, from physics to social
sciences. The new X-ray source has advantageous scalings, as the maximum
harmonic order is proportional to the cube of the laser amplitude enhanced by
relativistic self-focusing in plasma. This allows straightforward extension of
the coherent X-ray generation to the keV and tens of keV spectral regions. The
implemented X-ray source is remarkably easily accessible: the requirements for
the laser can be met in a university-scale laboratory, the gas jet is a
replenishable debris-free target, and the harmonics emanate directly from the
gas jet without additional devices. Our results open the way to a compact
coherent ultrashort brilliant X-ray source with single shot and high-repetition
rate capabilities, suitable for numerous applications and diagnostics in many
research fields
Laser-wakefield accelerators for high-resolution X-ray imaging of complex microstructures
Laser-wakefield accelerators (LWFAs) are high acceleration-gradient plasma-based particle accelerators capable of producing ultra-relativistic electron beams. Within the strong focusing fields of the wakefield, accelerated electrons undergo betatron oscillations, emitting a bright pulse of X-rays with a micrometer-scale source size that may be used for imaging applications. Non-destructive X-ray phase contrast imaging and tomography of heterogeneous materials can provide insight into their processing, structure, and performance. To demonstrate the imaging capability of X-rays from an LWFA, we have examined an irregular eutectic in the aluminum-silicon (Al-Si) system. The lamellar spacing of the Al-Si eutectic microstructure is on the order of a few micrometers, thus requiring high spatial resolution. We present comparisons between the sharpness and spatial resolution in phase contrast images of this eutectic alloy obtained via X-ray phase contrast imaging at the Swiss Light Source (SLS) synchrotron and X-ray projection microscopy via an LWFA source. An upper bound on the resolving power of 2.7 ± 0.3 µm of the LWFA source in this experiment was measured. These results indicate that betatron X-rays from LWFA can provide an alternative to conventional synchrotron sources for high resolution imaging of eutectics and, more broadly, complex microstructures
Summary of WG7—High brightness Power Sources: From Laser Technology to Beam Drivers
In this paper we summarize the contributions presented during the Working Group 7 (WG7) sessions, dedicated to high brightness power sources. In this context we have tackled several topics of high relevance to novel accelerators, including laser technology for laser driven accelerators, the state of the art of high peak and average power lasers, the laser beam quality, contrast and stability. A number of novel results were presented especially in the area of laser beam characterization and control, advanced laser concepts, target control and electron beam diagnostics currently under development at a range of labs engaged in the development of advanced accelerator concepts