4 research outputs found

    Fine-Needle Aspiration Cytology of Parathyroid Carcinoma Mimic Hürthle Cell Thyroid Neoplasm

    Get PDF
    Background. Fine-needle aspiration (FNA) can cause misdiagnosis of cytomorphological findings between parathyroid and thyroid lesions. Case Presentation. A 31-year-old man presented with a palpable neck mass on the right thyroid lobe. FNA cytology was reported as intrathyroidal lymphoid hyperplasia. After 5 years, repeated FNA was done on the enlarged nodule with result of Hürthle cell lesion. Prior to right lobectomy, laboratories revealed elevated serum calcium and parathyroid hormone (PTH). Careful history taking revealed chronic knee pain and ossifying fibroma at the maxilla. Ultrasonography showed a 2.8 cm mass inferior to right thyroid lobe. Pathology from en bloc resection was parathyroid carcinoma and immunohistochemical study revealed positivity for PTH. Genetic analysis found somatic mutation of CDC73 gene in exon1 (c.70delG) which caused premature stop codon in amino acid 26 (p.Glu24Lysfs2*). The final diagnosis was hyperparathyroidism-jaw tumor syndrome. Conclusions. FNA cytology of parathyroid can mimic thyroid lesion. It is important to consider and correlate the entire information from clinical history, laboratory, imaging, and FNA

    Missense Mutations in Exons 18–24 of EGFR in Hepatocellular Carcinoma Tissues

    No full text
    Epidermal growth factor receptor (EGFR), a transmembrane tyrosine kinase receptor, plays important roles in various cancers. In nonsmall cell lung cancer (NSCLC), EGFR mutations cluster around the ATP-binding pocket (exons 18–21) and some of these mutations activate the kinase and induce an increased sensitivity to EGFR-tyrosine kinase inhibitors. Nevertheless, data of EGFR mutations in HCC are limited. In this study, we investigated EGFR expression by immunohistochemistry and EGFR mutations (exons 18–24) by PCR cloning and sequencing. EGFR overexpression in HCC and matched nontumor tissues were detected in 13/40 (32.5%) and 10/35 (28.6%), respectively. Moreover, missense and silent mutations were detected in 13/33 (39.4%) and 11/33 (33.3%) of HCC tissues, respectively. The thirteen different missense mutations were p.L730P, p.V742I, p.K757E, p.I780T, p.N808S, p.R831C, p.V851A, p.V897A, p.S912P, p.P937L, p.T940A, p.M947V, and p.M947T. We also found already known SNP, p.Q787Q (CAG>CAA), in 13/33 (39.4%) of HCC tissues. However, no significant association was detected between EGFR mutations and EGFR overexpression, tissue, age, sex, tumor size, AFP, HBsAg, TP53, and Ki-67. Further investigation is warranted to validate the frequency and activity of these missense mutations, as well as their roles in HCC tumorigenesis and in EGFR-targeted therapy
    corecore