2 research outputs found

    New mean field theories for the liquid-vapor transition of charged hard spheres

    Full text link
    The phase behavior of the primitive model of electrolytes is studied in the framework of various mean field approximations obtained recently by means of methods pertaining to statistical field theory (CAILLOL, J.-M., 2004, \textit{J. Stat. Phys.}, \textbf{115}, 1461). The role of the regularization of the Coulomb potential at short distances is discussed in details and the link with more traditional approximations of the theory of liquids is discussed. The values computed for the critical temperatures, chemical potentials, and densities are compared with available Monte Carlo data and other theoretical predictions.Comment: 17 pages, 4 figures, 3 table

    Thermodynamics and Phase Transitions of Electrolytes on Lattices with Different Discretization Parameters

    Full text link
    Lattice models are crucial for studying thermodynamic properties in many physical, biological and chemical systems. We investigate Lattice Restricted Primitive Model (LRPM) of electrolytes with different discretization parameters in order to understand thermodynamics and the nature of phase transitions in the systems with charged particles. A discretization parameter is defined as a number of lattice sites that can be occupied by each particle, and it allows to study the transition from the discrete picture to the continuum-space description. Explicit analytic and numerical calculations are performed using lattice Debye-H\"{u}ckel approach, which takes into account the formation of dipoles, the dipole-ion interactions and correct lattice Coulomb potentials. The gas-liquid phase separation is found at low densities of charged particles for different types of lattices. The increase in the discretization parameter lowers the critical temperature and the critical density, in agreement with Monte Carlo computer simulations results. In the limit of infinitely large discretization our results approach the predictions from the continuum model of electrolytes. However, for the very fine discretization, where each particle can only occupy one lattice site, the gas-liquid phase transitions are suppressed by order-disorder phase transformations.Comment: Submitted to Molecular Physic
    corecore