37 research outputs found
Potentiometric Electronic Tongues for Foodstuff and Biosample Recognition—An Overview
Potentiometric sensors are attractive tools for the fabrication of various electronic tongues that can be used in wide area of applications, ranging from foodstuff recognition to environmental monitoring and medical diagnostics. Their main advantages are the ability to modify their selectivity (including cross-sensitivity effects) and the possibility of miniaturization using appropriate construction methods for the transducer part (e.g., with the use of solid-state technology). In this overview various examples of the design, performance, and applications of potentiometric electronic tongues are presented. The results summarize recent research in the field conducted in the Department of Microbioanalytics, Warsaw University of Technology (WUT)
Characterization and taste masking evaluation of microparticles with cetirizine dihydrochloride and methacrylate-based copolymer obtained by the spray drying
Taste of a pharmaceutical formulation is an important parameter for the effectiveness of pharmacotherapy. Cetirizine dihydrochloride (CET) is a second-generation antihistamine that is commonly administered in allergy treatment. CET is characterized by extremely bitter taste and it is a great challenge to successfully mask its taste; therefore the goal of this work was to formulate and characterize the microparticles obtained by the spray drying method with CET and poly(butyl methacrylate-co-(2-dimethylaminoethyl) methacrylate-co-methyl methacrylate 1:2:1 copolymer (Eudragit E PO) as a barrier coating. Assessment of taste masking by the electronic tongue has revealed that designed formulations created an effective taste masking barrier. Taste masking effect was also confirmed by the in vivo model and the in vitro release profile of CET. Obtained data have shown that microparticles with a drug/polymer ratio (0.5:1) are promising CET carriers with efficient taste masking potential and might be further used in designing orodispersible dosage forms with CET
Quantitative analysis of active pharmaceutical ingredients (APIs) using a potentiometric electronic tongue in a SIA flow system
Research funding: National Science Centre. Grant Numbers: DEC-2013/09/B/ST4/00957, LIDER/17/202/L-1/09/NCBiR/2010An advanced potentiometric electronic tongue and Sequential Injection Analysis (SIA) measurement system was applied for the quantitative analysis of mixtures containing three active pharmaceutical ingredients (APIs): acetaminophen, ascorbic acid and acetylsalicylic acid, in the presence of various amounts of caffeine as interferent. The flow-through sensor array was composed of miniaturized classical ion-selective electrodes based on plasticized PVC membranes containing only ion exchangers. Partial Least Squares (PLS) analysis of the steady-state sensor array responses, measured in API mixtures prepared by the SIA system permitted a correct quantitative analysis of acetylsalicylic acid and ascorbic acid. Further optimization using multiway PLS fed by dynamic responses without additional feature extraction did not improve significantly the resolution of acetaminophen. Lastly, the chemometric treatment, involving the extraction of dynamic components of the transient response employing the Wavelet transform, the removal of less-significant coefficients by means of Causal Index pruning and training of an Artificial Neural Network (ANN) with the selected coefficients, allowed the simultaneous determination of all the three studied APIs, while counterbalancing any interference due to caffeine
Alginate: Current Use and Future Perspectives in Pharmaceutical and Biomedical Applications
Over the last decades, alginates, natural multifunctional polymers, have increasingly drawn attention as attractive compounds in the biomedical and pharmaceutical fields due to their unique physicochemical properties and versatile biological activities. The focus of the paper is to describe biological and pharmacological activity of alginates and to discuss the present use and future possibilities of alginates as a tool in drug formulation. The recent technological advancements with using alginates, issues related to alginates suitability as matrix for three-dimensional tissue cultures, adjuvants of antibiotics, and antiviral agents in cell transplantation in diabetes or neurodegenerative diseases treatment, and an update on the antimicrobial and antiviral therapy of the alginate based drugs are also highlighted
Independent comparison study of six different electronic tongues applied for pharmaceutical analysis
Electronic tongue technology based on arrays of cross-sensitive chemical sensors and chemometric data processing has attracted a lot of researchers' attention through the last years. Several so far reported applications dealing with pharmaceutical related tasks employed different e-tongue systems to address different objectives. In this situation, it is hard to judge on the benefits and drawbacks of particular e-tongue implementations for R&D in pharmaceutics. The objective of this study was to compare the performance of six different e-tongues applied to the same set of pharmaceutical samples. For this purpose, two commercially available systems (from Insent and AlphaMOS) and four laboratory prototype systems (two potentiometric systems from Warsaw operating in flow and static modes, one potentiometric system from St. Petersburg, one voltammetric system from Barcelona) were employed. The sample set addressed in the study comprised nine different formulations based on caffeine citrate, lactose monohydrate, maltodextrine, saccharin sodium and citric acid in various combinations. To provide for the fair and unbiased comparison, samples were evaluated under blind conditions and data processing from all the systems was performed in a uniform way. Different mathematical methods were applied to judge on similarity of the e-tongues response from the samples. These were principal component analysis (PCA), RV' matrix correlation coefficients and Tuckeŕs congruency coefficients
Independent comparison study of six different electronic tongues applied for pharmaceutical analysis
Quantum Dots—Assisted 2D Fluorescence for Pattern Based Sensing of Amino Acids, Oligopeptides and Neurotransmitters
Quantum dots (QDs) are very attractive nanomaterials for analytical chemistry, due to high photostability, large surface area featuring numerous ways of bioconjugation with biomolecules, usually high quantum yield and long decay times. Their broad absorption spectra and narrow, sharp emission spectra of size-tunable fluorescence make them ideal tools for pattern-based sensing. However, almost always they are applied for specific sensing with zero-dimensional (0D) signal reporting (only peak heights or peak shifts are considered), without taking advantage of greater amount of information hidden in 1D signal (emission spectra), or huge amount of information hidden in 2D fluorescence maps (Excitation-Emission Matrixes, EEMs). Therefore, in this work we propose opposite strategy—non-specific interactions of QDs, which are usually avoided and regarded as their disadvantage, were exploited here for 2D fluorescence fingerprinting. Analyte-specific multivariate fluorescence response of QDs is decoded with the use of Partial Least Squares—Discriminant Analysis. Even though only one type of QDs is studied, the proposed pattern-based method enables to obtain satisfactory accuracy for all studied compounds—various neurotransmitters, amino-acids and oligopeptides. This is a proof of principle of the possibility of the identification of various bioanalytes by such fluorescence fingerprinting with the use of QDs
Chemosensory Optode Array Based on Pluronic-Stabilized Microspheres for Differential Sensing
Differential sensing techniques are becoming nowadays an attractive alternative to classical selective recognition methods due to the “fingerprinting” possibility allowing identifying various analytes without the need to fabricate highly selective binding recognition sites. This work shows for the first time that surfactant-based ion-sensitive microspheres as optodes in the microscale can be designed as cross-sensitive materials; thus, they are perfect candidates as sensing elements for differential sensing. Four types of the newly developed chemosensory microspheres—anion- and cation-selective, sensitive toward amine- and hydroxyl moiety—exhibited a wide range of linear response (two to five orders of magnitude) in absorbance and/or fluorescence mode, great time stability (at least 2 months), as well as good fabrication repeatability. The array of four types of chemosensitive microspheres was capable of perfect pattern-based identification of eight neurotransmitters: dopamine, epinephrine, norepinephrine, γ-aminobutyric acid (GABA), acetylcholine, histamine, taurine, and phenylethylamine. Moreover, it allowed the quantification of neurotransmitters, also in mixtures. Its selectivity toward neurotransmitters was studied using α- and β-amino acids (Ala, Asp, Pro, Tyr, taurine) in simulated blood plasma solution. It was revealed that the chemosensory optode set could recognize subtle differences in the chemical structure based on the differential interaction of microspheres with various moieties present in the molecule. The presented method is simple, versatile, and convenient, and it could be adopted to various quantitative and qualitative analytical tasks due to the simple adjusting of microspheres components and measurement conditions
Chemosensory Optode Array Based on Pluronic-Stabilized Microspheres for Differential Sensing
Differential sensing techniques are becoming nowadays an attractive alternative to classical selective recognition methods due to the “fingerprinting” possibility allowing identifying various analytes without the need to fabricate highly selective binding recognition sites. This work shows for the first time that surfactant-based ion-sensitive microspheres as optodes in the microscale can be designed as cross-sensitive materials; thus, they are perfect candidates as sensing elements for differential sensing. Four types of the newly developed chemosensory microspheres—anion- and cation-selective, sensitive toward amine- and hydroxyl moiety—exhibited a wide range of linear response (two to five orders of magnitude) in absorbance and/or fluorescence mode, great time stability (at least 2 months), as well as good fabrication repeatability. The array of four types of chemosensitive microspheres was capable of perfect pattern-based identification of eight neurotransmitters: dopamine, epinephrine, norepinephrine, γ-aminobutyric acid (GABA), acetylcholine, histamine, taurine, and phenylethylamine. Moreover, it allowed the quantification of neurotransmitters, also in mixtures. Its selectivity toward neurotransmitters was studied using α- and β-amino acids (Ala, Asp, Pro, Tyr, taurine) in simulated blood plasma solution. It was revealed that the chemosensory optode set could recognize subtle differences in the chemical structure based on the differential interaction of microspheres with various moieties present in the molecule. The presented method is simple, versatile, and convenient, and it could be adopted to various quantitative and qualitative analytical tasks due to the simple adjusting of microspheres components and measurement conditions