6 research outputs found

    Geometric Langevin equations on submanifolds and applications to the stochastic melt-spinning process of nonwovens and biology

    Full text link
    In this article we develop geometric versions of the classical Langevin equation on regular submanifolds in euclidean space in an easy, natural way and combine them with a bunch of applications. The equations are formulated as Stratonovich stochastic differential equations on manifolds. The first version of the geometric Langevin equation has already been detected before by Leli\`evre, Rousset and Stoltz with a different derivation. We propose an additional extension of the models, the geometric Langevin equations with velocity of constant absolute value. The latters are seemingly new and provide a galaxy of new, beautiful and powerful mathematical models. Up to the authors best knowledge there are not many mathematical papers available dealing with geometric Langevin processes. We connect the first version of the geometric Langevin equation via proving that its generator coincides with the generalized Langevin operator proposed by Soloveitchik, Jorgensen and Kolokoltsov. All our studies are strongly motivated by industrial applications in modeling the fiber lay-down dynamics in the production process of nonwovens. We light up the geometry occuring in these models and show up the connection with the spherical velocity version of the geometric Langevin process. Moreover, as a main point, we construct new smooth industrial relevant three-dimensional fiber lay-down models involving the spherical Langevin process. Finally, relations to a class of self-propelled interacting particle systems with roosting force are presented and further applications of the geometric Langevin equations are given

    Construction of Lp\mathcal L^p-strong Feller Processes via Dirichlet Forms and Applications to Elliptic Diffusions

    Full text link
    We provide a general construction scheme for Lp\mathcal L^p-strong Feller processes on locally compact separable metric spaces. Starting from a regular Dirichlet form and specified regularity assumptions, we construct an associated semigroup and resolvents of kernels having the Lp\mathcal L^p-strong Feller property. They allow us to construct a process which solves the corresponding martingale problem for all starting points from a known set, namely the set where the regularity assumptions hold. We apply this result to construct elliptic diffusions having locally Lipschitz matrix coefficients and singular drifts on general open sets with absorption at the boundary. In this application elliptic regularity results imply the desired regularity assumptions

    Hypocoercivity for Kolmogorov backward evolution equations and applications

    Full text link
    In this article we extend the modern, powerful and simple abstract Hilbert space strategy for proving hypocoercivity that has been developed originally by Dolbeault, Mouhot and Schmeiser. As well-known, hypocoercivity methods imply an exponential decay to equilibrium with explicit computable rate of convergence. Our extension is now made for studying the long-time behavior of some strongly continuous semigroup generated by a (degenerate) Kolmogorov backward operator L. Additionally, we introduce several domain issues into the framework. Necessary conditions for proving hypocoercivity need then only to be verified on some fixed operator core of L. Furthermore, the setting is also suitable for covering existence and construction problems as required in many applications. The methods are applicable to various, different, Kolmogorov backward evolution problems. As a main part, we apply the extended framework to the (degenerate) spherical velocity Langevin equation. The latter can be seen as some kind of an analogue to the classical Langevin equation in case spherical velocities are required. This model is of important industrial relevance and describes the fiber lay-down in the production process of nonwovens. For the construction of the strongly continuous contraction semigroup we make use of modern hypoellipticity tools and pertubation theory
    corecore