291 research outputs found

    Hierarchical DSSC structures based on single walled TiO2 nanotube arrays reach back-side illumination solar light conversion efficiency of 8%

    Full text link
    In the present work we introduce a path to the controlled construction of DSSCs based on hierarchically structured single walled, self-organized TiO2 layers. In a first step we describe a simple approach to selectively remove the inner detrimental shell of anodic TiO2 nanotubes (NTs). This then allows controlled well-defined layer-by-layer decoration of these TiO2-NT walls with TiO2 nanoparticles (this in contrast to conventional TiO2 nanotubes). We show that such defined multiple layered decoration can be optimized to build dye sensitized solar cells that (under back-side illumination conditions) can yield solar light conversion efficiencies in the range of 8 %. The beneficial effects observed can be ascribed to a combination of three factors : 1) improved electronic properties of the single walled tubes themselves, 2) a further improvement of the electronic properties by the defined TiCl4 treatment, and 3) a higher specific dye loading that becomes possible for the layer-by-layer decorated single walled tubes.Comment: arXiv admin note: text overlap with arXiv:1610.0643

    Aligned metal oxide nanotube arrays: key-aspects of anodic TiO2 nanotube formation and properties

    Full text link
    Over the past ten years, self-aligned TiO2 nanotubes have attracted tremendous scientific and technological interest due to their anticipated impact on energy conversion, environment remediation and biocompatibility. In the present manuscript, we review fundamental principles that govern the self-organized initiation of anodic TiO2 nanotubes. We start with the fundamental question: Why is self-organization taking place? We illustrate the inherent key mechanistic aspects that lead to tube growth in various different morphologies, such as rippled-walled tubes, smooth tubes, stacks and bamboo-type tubes, and importantly the formation of double-walled TiO2 nanotubes versus single-walled tubes, and the drastic difference in their physical and chemical properties. We show how both double- and single-walled tube layers can be detached from the metallic substrate and exploited for the preparation of robust self-standing membranes. Finally, we show how by selecting the right growth approach to TiO2 nanotubes specific functional features can be significantly improved, e.g., an enhanced electron mobility, intrinsic doping, or crystallization into pure anatase at extremely high temperatures can be achieved. This in turn can be exploited in constructing high performance devices based on anodic TiO2 in a wide range of applications.Comment: from Nanoscale Horiz., 2016, Advance Articl

    Aminated TiO2 nanotube as a Photoelectrochemical Water Splitting photoanode

    Full text link
    The present work reports on the enhancement of TiO2 nanotubes photoelectrochemical water splitting rate by decorating the nanostructure with an amine layer in a hydrothermal process using diethylenetriamine (DETA). The aminate coated TiO2 tubes show a stable improvement of the photoresponse in both UV and visible light spectrum and under hydrothermal conditions, 4-fold increase of the photoelectrochemical water splitting rate is observed. From intensity modulated photocurrent spectroscopy (IMPS) measurements significantly faster electron transport times are observed indicating a surface passivating effect of the N-decoration.Comment: In Catalysis Today, Available online 21 July 201

    Conical-Shaped Titania Nanotubes for Optimized Light Management in DSSCs Reach Back-side Illumination Efficiencies > 8%

    Full text link
    In the present work, we introduce the anodic growth of conical shaped TiO2 nanotube arrays. These titania nanocones provide a scaffold for dye-sensitized solar cell (DSSC) structures with significantly improved photon management, providing an optimized absorption profile compared with conventional cylindrical nanotube arrays. Finite difference time domain (FDTD) modelling demonstrates a drastically changed power-absorption characteristic over the tube length. When used in a back-side illumination DSSC configuration, nanocone structures can reach over 60 % higher solar cell conversion efficiency than conventional tubes. The resulting {\eta} of ca. 8 % represents one of the highest reported values for Graetzel type DSSCs used under back-side illumination
    • …
    corecore