7 research outputs found

    WrbA from Escherichia coli and Archaeoglobus fulgidus Is an NAD(P)H:Quinone Oxidoreductase

    No full text
    WrbA (tryptophan [W] repressor-binding protein) was discovered in Escherichia coli, where it was proposed to play a role in regulation of the tryptophan operon; however, this has been put in question, leaving the function unknown. Here we report a phylogenetic analysis of 30 sequences which indicated that WrbA is the prototype of a distinct family of flavoproteins which exists in a diversity of cell types across all three domains of life and includes documented NAD(P)H:quinone oxidoreductases (NQOs) from the Fungi and Viridiplantae kingdoms. Biochemical characterization of the prototypic WrbA protein from E. coli and WrbA from Archaeoglobus fulgidus, a hyperthermophilic species from the Archaea domain, shows that these enzymes have NQO activity, suggesting that this activity is a defining characteristic of the WrbA family that we designate a new type of NQO (type IV). For E. coli WrbA, the K(m)(NADH) was 14 ± 0.43 μM and the K(m)(benzoquinone) was 5.8 ± 0.12 μM. For A. fulgidus WrbA, the K(m)(NADH) was 19 ± 1.7 μM and the K(m)(benzoquinone) was 37 ± 3.6 μM. Both enzymes were found to be homodimeric by gel filtration chromatography and homotetrameric by dynamic light scattering and to contain one flavin mononucleotide molecule per monomer. The NQO activity of each enzyme is retained over a broad pH range, and apparent initial velocities indicate that maximal activities are comparable to the optimum growth temperature for the respective organisms. The results are discussed and implicate WrbA in the two-electron reduction of quinones, protecting against oxidative stress

    Crystal Structure of the NADH:Quinone Oxidoreductase WrbA from Escherichia coliâ–¿

    No full text
    The flavoprotein WrbA, originally described as a tryptophan (W) repressor-binding protein in Escherichia coli, has recently been shown to exhibit the enzymatic activity of a NADH:quinone oxidoreductase. This finding points toward a possible role in stress response and in the maintenance of a supply of reduced quinone. We have determined the three-dimensional structure of the WrbA holoprotein from E. coli at high resolution (1.66 Ã…), and we observed a characteristic, tetrameric quaternary structure highly similar to the one found in the WrbA homologs of Deinococcus radiodurans and Pseudomonas aeruginosa. A similar tetramer was originally observed in an iron-sulfur flavoprotein involved in the reduction of reactive oxygen species. Together with other, recently characterized proteins such as YhdA or YLR011wp (Lot6p), these tetrameric flavoproteins may constitute a large family with diverse functions in redox catalysis. WrbA binds substrates at an active site that provides an ideal stacking environment for aromatic moieties, while providing a pocket that is structured to stabilize the ADP part of an NADH molecule in its immediate vicinity. Structures of WrbA in complex with benzoquinone and NADH suggest a sequential binding mechanism for both molecules in the catalytic cycle

    Tryptophan repressor-binding proteins from Escherichia coli and Archaeoglobus fulgidus as new catalysts for 1,4-dihydronicotinamide adenine dinucleotide-dependent amperometric biosensors and biofuel cells.

    No full text
    The tryptophan (W) repressor-binding proteins (WrbA) from Escherichia coli (EcWrbA) and Archaeoglobus fulgidus (AfWrbA) were investigated for possible use in 1,4-dihydronicotinamide adenine dinucleotide (NADH) dependent amperometric biosensors and biofuel cells. EcWrbA and AfWrbA are oligomeric flavoproteins binding one flavin mononucleotide (FMN) per monomer and belonging to a new family of NAD(P)H:quinone oxidoreductases (NQOs). The enzymes were covalently linked to a low potential Os redox polymer onto graphite in the presence of single-walled carbon nanotube (SWCNT) preparations of varying average lengths. The performance of the enzyme modified electrodes for NADH oxidation was strongly depending on the average length of the applied SWCNTs. By blending the Os redox polymer with SWCNTs, the electrocatalytic current could be increased up to a factor of 5. Results obtained for AfWrbA modified electrodes were better than those for EcWrbA. For NADH detection, a linear range between 5 microM and 1 mM, a lower limit of detection of 3 microM, and a sensitivity of 56.5 nA microM(-1) cm(-2) could be reached. Additionally spectroelectrochemical measurements were carried out in order to determine the midpoint potentials of the enzymes (-115 mV vs NHE for EcWrbA and -100 mV vs NHE for AfWrbA pH 7.0). Furthermore, an AfWrbA modified electrode was used as an anode in combination with a Pt black cathode as a biofuel cell prototype

    7-nitro-4-(phenylthio)benzofurazan is a potent generator of superoxide and hydrogen peroxide

    No full text
    Here, we report on 7-nitro-4-(phenylthio)benzofurazan (NBF-SPh), the most potent derivative among a set of patented anticancer 7-nitrobenzofurazans (NBFs), which have been suggested to function by perturbing protein-protein interactions. We demonstrate that NBF-SPh participates in toxic redox-cycling, rapidly generating reactive oxygen species (ROS) in the presence of molecular oxygen, and this is the first report to detail ROS production for any of the anticancer NBFs. Oxygraph studies showed that NBF-SPh consumes molecular oxygen at a substantial rate, rivaling even plumbagin, menadione, and juglone. Biochemical and enzymatic assays identified superoxide and hydrogen peroxide as products of its redox-cycling activity, and the rapid rate of ROS production appears to be sufficient to account for some of the toxicity of NBF-SPh (LC50 = 12.1 mu M), possibly explaining why tumor cells exhibit a sharp threshold for tolerating the compound. In cell cultures, lipid peroxidation was enhanced after treatment with NBF-SPh, as measured by 2-thiobarbituric acid-reactive substances, indicating a significant accumulation of ROS. Thioglycerol rescued cell death and increased survival by 15-fold to 20-fold, but pyruvate and uric acid were ineffective protectants. We also observed that the redox-cycling activity of NBF-SPh became exhausted after an average of approximately 19 cycles per NBF-SPh molecule. Electrochemical and computational analyses suggest that partial reduction of NBF-SPh enhances electrophilicity, which appears to encourage scavenging activity and contribute to electrophilic toxicity

    7-nitro-4-(phenylthio)benzofurazan is a potent generator of superoxide and hydrogen peroxide

    No full text
    Here, we report on 7-nitro-4-(phenylthio)benzofurazan (NBF-SPh), the most potent derivative among a set of patented anticancer 7-nitrobenzofurazans (NBFs), which have been suggested to function by perturbing protein-protein interactions. We demonstrate that NBF-SPh participates in toxic redox-cycling, rapidly generating reactive oxygen species (ROS) in the presence of molecular oxygen, and this is the first report to detail ROS production for any of the anticancer NBFs. Oxygraph studies showed that NBF-SPh consumes molecular oxygen at a substantial rate, rivaling even plumbagin, menadione, and juglone. Biochemical and enzymatic assays identified superoxide and hydrogen peroxide as products of its redox-cycling activity, and the rapid rate of ROS production appears to be sufficient to account for some of the toxicity of NBF-SPh (LC50 = 12.1 mu M), possibly explaining why tumor cells exhibit a sharp threshold for tolerating the compound. In cell cultures, lipid peroxidation was enhanced after treatment with NBF-SPh, as measured by 2-thiobarbituric acid-reactive substances, indicating a significant accumulation of ROS. Thioglycerol rescued cell death and increased survival by 15-fold to 20-fold, but pyruvate and uric acid were ineffective protectants. We also observed that the redox-cycling activity of NBF-SPh became exhausted after an average of approximately 19 cycles per NBF-SPh molecule. Electrochemical and computational analyses suggest that partial reduction of NBF-SPh enhances electrophilicity, which appears to encourage scavenging activity and contribute to electrophilic toxicity
    corecore