3 research outputs found

    Vestibular modulation of spatial perception

    Get PDF
    Vestibular inputs make a key contribution to the own sense of spatial location. While the effects of vestibular stimulation on visuo-spatial processing in neurological patients have been extensively described, the normal contribution of vestibular inputs to spatial perception remains unclear. To address this issue, we used a line bisection task to investigate the effects of galvanic vestibular stimulation (GVS) on spatial perception, and on the transition between near and far space. Brief left-anodal and right-cathodal GVS or right-anodal and left-cathodal GVS were delivered. A sham stimulation condition was included. Participants bisected lines of different lengths at six distances from the body using a laser pointer. Consistent with previous results, our data showed an overall left to right shift in bisection bias as a function of viewing distance: suggestive of a leftward bias in near space, and a rightward bias in far space. GVS induced strong polarity dependent effects in spatial perception, broadly consistent with those previously reported in patients: left-anodal and right-cathodal GVS induced a leftward bisection bias, while right-anodal and left-cathodal GVS reversed this effect, producing instead a bisection bias toward the right side of the space. Interestingly, the effects of GVS were comparable in near and far space. We speculate that vestibular-induced biases in space perception may optimize gathering of information from different parts of the environment

    Persistence of internal representations of alternative voluntary actions

    No full text
    We have investigated a situation in which externally available response alternatives and their internal representations could be dissociated, by suddenly removing some action alternatives from the response space during the interval between the free selection and the execution of a voluntary action. Choice reaction times in this situation were related to the number of initially available response alternatives, rather than to the number of alternatives available effectively available after the change in the external environment. The internal representations of response alternatives appeared to persist after external changes actually made the corresponding action unavailable. This suggests a surprising dynamics of voluntary action representations: counterfactual response alternatives persist, and may even be actively maintained, even when they are not available in reality. Our results highlight a representational basis for the counterfactual course of action. Such representations may play a key role in feelings of regret, disappointment or frustration. These feelings all involve persistent representation of counterfactual response alternatives that may not actually be available in the environment

    Sensorimotor organization of a sustained involuntary movement

    No full text
    Involuntary movements share much of the motor control circuitry used for voluntary movement, yet the two can be easily distinguished. The Kohnstamm phenomenon (where a sustained, hard push produces subsequent involuntary arm raising) is a useful experimental model for exploring differences between voluntary and involuntary movement. Both central and peripheral accounts have been proposed, but little is known regarding how the putative Kohnstamm generator responds to afferent input. We addressed this by obstructing the involuntary upward movement of the arm. Obstruction prevented the rising EMG pattern that characterizes the Kohnstamm. Importantly, once the obstruction was removed, the EMG signal resumed its former increase, suggesting a generator that persists despite peripheral input. When only one arm was obstructed during bilateral involuntary movements, only the EMG signal from the obstructed arm showed the effect. Upon release of the obstacle, the obstructed arm reached the same position and EMG level as the unobstructed arm. Comparison to matched voluntary movements revealed a preserved stretch response when a Kohnstamm movement first contacts an obstacle, and also an overestimation of the perceived contact force. Our findings support a hybrid central and peripheral account of the Kohnstamm phenomenon. The strange subjective experience of this involuntary movement is consistent with the view that movement awareness depends strongly on efference copies, but that the Kohnstamm generator does not produces efference copies
    corecore