4,752 research outputs found

    Hadamard transform techniques in photothermal spectroscopy

    Full text link
    Hadamard transform imaging is shown to be generally applicable to any linear spectroscopy and to be useful where locally high power densities are undesirable. Application to transverse photothermal deflection and Raman spectroscopies is reviewed. The modulation transfer functions (MTF) of both source‐encoded and signal‐encoded Hadamard imagers are described. Preliminary results from a signal‐encoded imager are presented.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87498/2/725_1.pd

    Vertex corrections in localized and extended systems

    Get PDF
    Within many-body perturbation theory we apply vertex corrections to various closed-shell atoms and to jellium, using a local approximation for the vertex consistent with starting the many-body perturbation theory from a DFT-LDA Green's function. The vertex appears in two places -- in the screened Coulomb interaction, W, and in the self-energy, \Sigma -- and we obtain a systematic discrimination of these two effects by turning the vertex in \Sigma on and off. We also make comparisons to standard GW results within the usual random-phase approximation (RPA), which omits the vertex from both. When a vertex is included for closed-shell atoms, both ground-state and excited-state properties demonstrate only limited improvements over standard GW. For jellium we observe marked improvement in the quasiparticle band width when the vertex is included only in W, whereas turning on the vertex in \Sigma leads to an unphysical quasiparticle dispersion and work function. A simple analysis suggests why implementation of the vertex only in W is a valid way to improve quasiparticle energy calculations, while the vertex in \Sigma is unphysical, and points the way to development of improved vertices for ab initio electronic structure calculations.Comment: 8 Pages, 6 Figures. Updated with quasiparticle neon results, extended conclusions and references section. Minor changes: Updated references, minor improvement

    η\eta Carinae's Dusty Homunculus Nebula from Near-Infrared to Submillimeter Wavelengths: Mass, Composition, and Evidence for Fading Opacity

    Get PDF
    Infrared observations of the dusty, massive Homunculus Nebula around the luminous blue variable η\eta Carinae are crucial to characterize the mass-loss history and help constrain the mechanisms leading to the Great Eruption. We present the 2.4 - 670 μ\mum spectral energy distribution, constructed from legacy ISO observations and new spectroscopy obtained with the {\em{Herschel Space Observatory}}. Using radiative transfer modeling, we find that the two best-fit dust models yield compositions which are consistent with CNO-processed material, with iron, pyroxene and other metal-rich silicates, corundum, and magnesium-iron sulfide in common. Spherical corundum grains are supported by the good match to a narrow 20.2 μ\mum feature. Our preferred model contains nitrides AlN and Si3_3N4_4 in low abundances. Dust masses range from 0.25 to 0.44 MM_\odot but MtotM_{\rm{tot}} \ge 45 MM_\odot in both cases due to an expected high Fe gas-to-dust ratio. The bulk of dust is within a 5"" ×\times 7"" central region. An additional compact feature is detected at 390 μ\mum. We obtain LIRL_{\rm{IR}} = 2.96 ×\times 106^6 LL_\odot, a 25\% decline from an average of mid-IR photometric levels observed in 1971-1977. This indicates a reduction in circumstellar extinction in conjunction with an increase in visual brightness, allowing 25-40\% of optical and UV radiation to escape from the central source. We also present an analysis of 12^{12}CO and 13^{13}CO J=54J = 5-4 through 989-8 lines, showing that the abundances are consistent with expectations for CNO-processed material. The [12^{12}C~{\sc{ii}}] line is detected in absorption, which we suspect originates in foreground material at very low excitation temperatures.Comment: Accepted in Ap

    Nanostructural changes in cell wall pectins during strawberry fruit ripening assessed by atomic force microscopy

    Get PDF
    Rapid loss of firmness occurs during strawberry (Fragaria × ananassa Duch) ripening, resulting in a short shelf life and high economic losses. The disassembly of cell walls is considered the main responsible for fruit softening, being pectins extensively modified during strawberry ripening (Paniagua et al. 2014). Atomic force microscopy allows the analysis of individual polymer chains at nanostructural level with a minimal sample preparation (Morris et al., 2001). The main objective of this research was to compare pectins of green and red ripe strawberry fruits at the nanostructural level to shed light on structural changes that could be related to softening. Cell walls from strawberry fruits were extracted and fractionated with different solvents to obtain fractions enriched in a specific component. The yield of cell wall material, as well as the amount of the different fractions, decreased in ripe fruits. CDTA and Na2CO3 fractions underwent the largest decrements, being these fractions enriched in pectins supposedly located in the middle lamella and primary cell wall, respectively. Uronic acid content also decreased significantly during ripening in both pectin fractions, but the amount of soluble pectins, those extracted with phenol:acetic acid:water (PAW) and water increased in ripe fruits. Monosaccharide composition in CDTA and Na2CO3 fractions was determined by gas chromatography. In both pectin fractions, the amount of Ara and Gal, the two most abundant carbohydrates, decreased in ripe fruits. The nanostructural characteristics of CDTA and Na2CO3 pectins were analyzed by AFM. Isolated pectic chains present in the CDTA fraction were significantly longer and more branched in samples from green fruits than those present in samples obtained from red fruit. In spite of slight differences in length distributions, Na2CO3 samples from unripe fruits displayed some longer chains at low frequency that were not detected in ripe fruits. Pectin aggregates were more frequently observed in green fruit samples from both fractions. These results support that pectic chain length and the nanostructural complexity of the pectins present in CDTA and Na2CO3 fractions diminish during strawberry fruit development, and these changes, jointly with the loss of neutral sugars, could contribute to the solubilization of pectins and fruit softening. Paniagua et al. (2014). Ann Bot, 114: 1375-1383 Morris et al. (2001). Food Sci Tech 34: 3-10 This research was supported by FEDER EU Funds and the Ministerio de Educación y Ciencia of Spain (grant reference AGL2011-24814)Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Unravelling the nanostructure of strawberry fruit pectins by atomic force microscopy

    Get PDF
    Atomic force microscopy (AFM) allows the analysis of individual polymers at nanostructural level with a minimal sample preparation. This technique has been used to analyse the pectin disassembly process during the ripening and postharvest storage of several fleshy fruits. In general, pectins analysed by AFM are usually visualized as isolated chains, unbranched or with a low number of branchs and, occasionally, as large aggregates. However, the exact nature of these structures is unknown. It has been suggested that pectin aggregates represent a mixture of rhamnonogalacturonan I and homogalacturonan, while isolated chains and their branches are mainly composed by polygalacturonic acid. In order to gain insight into the nature of these structures, sodium carbonate soluble pectins from ripe strawberry (Fragaria x ananassa, Duch.) fruits were subjected to enzymatic digestion with endo-Polygalacturonase M2 from Aspergillus aculeatus, and the samples visualized by AFM at different time intervals. Pectins isolated from control, non-transformed plants, and two transgenic genotypes with low level of expression of ripening-induced pectinase genes encoding a polygalacturonase (APG) or a pectate lyase (APEL) were also included in this study. Before digestion, isolated pectin chains from control were shorter than those from transgenic fruits, showing number-average (LN) contour length values of 73.2 nm vs. 95.9 nm and 91.4 nm in APG and APEL, respectively. The percentage of branched polymers was significantly higher in APG polyuronides than in the remaining genotypes, 33% in APG vs. 6% in control and APEL. As a result of the endo-PG treatment, a gradual decrease in the main backbone length of isolated chains was observed in the three samples. The minimum LN value was reached after 8 h of digestion, being similar in the three genotypes, 22 nm. By contrast, the branches were not visible after 1.5-2 h of digestion. LN values were plotted against digestion time and the data fitted to a first-order exponential decay curve, obtaining R2 values higher than 0.9. The half digestion time calculated with these equations were similar for control and APG pectins, 1.7 h, but significantly higher in APEL, 2.5 h, indicating that these polymer chains were more resistant to endo-PG digestion. Regarding the pectin aggregates, their volumes were estimated and used to calculate LN molecular weights. Before digestion, control and APEL samples showed complexes of similar molecular weights, 1722 kDa, and slightly higher than those observed in APG samples. After endo-PG digestion, size of complexes diminished significantly, reaching similar values in the three pectin samples, around 650 kDa. These results suggest that isolated polymer chains visualized by AFM are formed by a HG domain linked to a shorter polymer resistant to endo-PG digestion, maybe xylogalacturonan or RG-I. The silencing of the pectate lyase gene slightly modified the structure and/or chemical composition of polymer chains making these polyuronides more resistant to enzymatic degradation. Similarly, polygalacturonic acid is one of the main component of the aggregates.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    AFM study of strawberry pectin nanostructure and its relevance on fruit texture

    Get PDF
    Atomic force microscopy (AFM) has been used to characterize the nanostructure of cell wall pectins during strawberry fruit growth and ripening, as well as in transgenic fruits with pectinase genes downregulated. This technique allows the imaging of individual polymers at high magnification with minimal sample preparation. AFM studies during fruit development show that pectin size, ramification and aggregation is reduced in ripe fruits. Additionally, transgenic lines with different pectinase genes downregulated (polygalacturonase, pectate lyase and B-galactosidase) also show a more complex pectin nanostructure, including longer chains, higher branching degree and larger presence of aggregates. In all those cases the higher pectin complexity at nanoscale correlates with a reduced softening in strawberry fruits at macroscale level. Globally, our results support the key role of pectins in fruit structure and highlights the use of AFM as a powerful tool to gain insights about the bases of textural fruit quality not only in strawberry, but also in other commercial crops.AGL2017-86531-C2-1-R, Ministerio de Economía, Industria y Competitividad of Spain and FEDER EU funds. Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Alkaline-Earth Derivatives of Diphenylphosphine-Borane

    Get PDF
    Treatment of β-diketiminato (BDI = HC{C(CH3)Ndipp)}2 where dipp = 2,6-iPr2C6H3) magnesium butyl [(BDI)MgBu] (I) and calcium hexamethyldisilazide [(BDI)Ca{N(SiMe3)2}] (II) complexes with equimolar quantities of diphenylphosphine-borane, Ph2PH·BH3, results in the formation of the respective alkaline earth (Ae) phosphidoborane derivatives [(BDI)Mg(Ph2PBH3)]2 (6a) and [(BDI)Ca(Ph2PBH3)] (7a). Although satisfactory single crystals of 7a could not be obtained, 6a was crystallographically characterized and both compounds display similar NMR spectra. The dimeric Ae-hydride complexes [(BDI)AeH]2 (IIIa, Ae = Mg; IIIb, Ae = Ca) react with substoichiometric quantities of Ph2PH·BH3, allowing the crystallization of the dimeric Mg and trimeric Ca phosphidoborane species [(BDI)Mg(H)(H3BPPh2)Mg(BDI)] (8) and [{(BDI)Ca}3(H)(H3BPPh2)2] (9). In the absence of coordinating Lewis bases, compounds 6a, 7a, 8, and 9 display dynamic solution-state behavior (in benzene and toluene), while addition of THF furnishes the monomeric adducts [(BDI)Mg(H3BPPh2)·THF] (6b) and [(BDI)Ca(H3BPPh2)·THF] (7b). Addition of Ph2PH·BH3 to compound 6a results in BH3 transfer to eliminate Ph2PH and generate the phosphinodiboronate complex [(BDI)Mg{(H3B)2PPh2}]2 (10) in preference to dehydrocoupling of the phosphidoborane and phosphine-borane reagents.</p

    miR-196b target screen reveals mechanisms maintaining leukemia stemness with therapeutic potential.

    Get PDF
    We have shown that antagomiR inhibition of miRNA miR-21 and miR-196b activity is sufficient to ablate MLL-AF9 leukemia stem cells (LSC) in vivo. Here, we used an shRNA screening approach to mimic miRNA activity on experimentally verified miR-196b targets to identify functionally important and therapeutically relevant pathways downstream of oncogenic miRNA in MLL-r AML. We found Cdkn1b (p27Kip1) is a direct miR-196b target whose repression enhanced an embryonic stem cell–like signature associated with decreased leukemia latency and increased numbers of leukemia stem cells in vivo. Conversely, elevation of p27Kip1 significantly reduced MLL-r leukemia self-renewal, promoted monocytic differentiation of leukemic blasts, and induced cell death. Antagonism of miR-196b activity or pharmacologic inhibition of the Cks1-Skp2–containing SCF E3-ubiquitin ligase complex increased p27Kip1 and inhibited human AML growth. This work illustrates that understanding oncogenic miRNA target pathways can identify actionable targets in leukemia

    Laser-written tunable liquid crystal aberration correctors

    Get PDF
    In this Article, we present a series of novel laser-written liquid crystal (LC) devices for aberration control for applications in beam shaping or aberration correction through adaptive optics. Each transparent LC device can correct for a chosen aberration mode with continuous greyscale tuning up to a total magnitude of more than 2π radians phase difference peak to peak at a wavelength of λ = 660 nm. For the purpose of demonstration, we present five different devices for the correction of five independent Zernike polynomial modes (although the technique could readily be used to manufacture devices based on other modes). Each device is operated by a single electrode pair tuned between 0 and 10 V. These devices have potential as a low-cost alternative to spatial light modulators for applications where a low-order aberration correction is sufficient and transmissive geometries are required
    corecore