3 research outputs found
Hemophagocytic lymphohistiocytosis in a patient with glioblastoma: a case report
Adult onset hemophagocytic lymphohistiocytosis (HLH) is a rare condition, usually secondary to either a precipitating infective or hematologic malignancy. We present a case of Epstein–Barr virus associated HLH in a 55-year-old female receiving treatment for a glioblastoma (GBM). It is possible that HLH is under recognized, as patients with GBM often have features of a nonspecific systemic inflammatory response syndrome, multiorgan failure and cognitive decline. A high index of suspicion and increased awareness can help improve timeliness of diagnosis. Therapeutically, Epstein–Barr virus associated HLH in patients with solid organ malignancy poses significant challenges. An individualized, multidisciplinary approach is essential when managing adult-onset HLH and providers will need to be mindful of the high mortality rate despite treatment
Inhibition of MCL-1 in breast cancer cells promotes cell death in vitro and in vivo
The present studies have examined approaches to suppress MCL-1 function in breast cancer cells, as a means to promote tumor cell death. Treatment of breast cancer cells with CDK inhibitors (flavopiridol; roscovitine) enhanced the lethality of the ERBB1 inhibitor lapatinib in a synergistic fashion. CDK inhibitors interacted with lapatinib to reduce MCL-1 expression and overexpression of MCL-1 or knock down of BAX and BAK suppressed drug combination lethality. Lapatinib-mediated inhibition of ERK1/2 and to a lesser extent AKT facilitated CDK inhibitor-induced suppression of MCL-1 levels. Treatment of cells with the BH3 domain/MCL-1 inhibitor obatoclax enhanced the lethality of lapatinib in a synergistic fashion. Knock out of MCL-1 and BCL-XL enhanced lapatinib toxicity to a similar extent as obatoclax and suppressed the ability of obatoclax to promote lapatinib lethality. Pre-treatment of cells with lapatinib or with obatoclax enhanced basal levels of BAX and BAK activity and further enhanced drug combination toxicity. In vivo tumor growth data in xenograft and syngeneic model systems confirmed our in vitro findings. Treatment of cells with CDK inhibitors enhanced the lethality of obatoclax in a synergistic fashion. Overexpression of MCL-1 or knock down of BAX and BAK suppressed the toxic interaction between CDK inhibitors and obatoclax. Obatoclax and lapatinib treatment or obatoclax and CDK inhibitor treatment or lapatinib and CDK inhibitor treatment radiosensitized breast cancer cells. Lapatinib and obatoclax interacted to suppress mammary tumor growth in vivo. Collectively our data demonstrate that manipulation of MCL-1 protein expression by CDK inhibition or inhibition of MCL-1 sequestering function by Obatoclax renders breast cancer cells more susceptible to BAX/BAK-dependent mitochondrial dysfunction and tumor cell death
Enhancing mda-7/IL-24 therapy in renal carcinoma cells by inhibiting multiple protective signaling pathways using sorafenib and by Ad.5/3 gene delivery
We have determined whether an adenovirus that comprises the tail and shaft domains of a serotype 5 virus and the knob domain of a serotype 3 virus expressing MDA-7/IL-24, Ad.5/3-mda-7, more effectively infects and kills renal carcinoma cells (RCCs) compared to a serotype 5 virus, Ad.5-mda-7. RCCs are a tumor cell type that generally does not express the receptor for the type 5 adenovirus; the coxsakie and adenovirus receptor (CAR). Ad.5/3-mda-7 infected RCCs to a much greater degree than Ad.5-mda-7. MDA-7/IL-24 protein secreted from Ad.5/3-mda-7-infected RCCs induced MDA-7/IL-24 expression and promoted apoptosis in uninfected “bystander” RCCs. MDA-7/IL-24 killed both infected and bystander RCCs via CD95 activation. Knockdown of intracellular MDA-7/IL-24 in uninfected RCCs blocked the lethal effects of conditioned media. Infection of RCC tumors in one flank, with Ad.5/3-mda-7, suppressed growth of infected tumors and reduced the growth rate of uninfected tumors implanted on the opposite flank. The toxicity of the serotype 5/3 recombinant adenovirus to express MDA-7/IL-24 was enhanced by combined molecular or small molecule inhibition of MEK1/2 and PI3K; inhibition of mTOR, PI3K and MEK1/2; or use of the multi-kinase inhibitor sorafenib. In RCCs, combined inhibition of cytoprotective cell signaling pathways enhanced the MDA-7/IL-24-induction of CD95 activation, with greater mitochondrial dysfunction due to loss of MCL-1 and BCL-XL expression and tumor cell death. Treatment of RCC tumors in vivo with sorafenib also enhanced Ad.5/3-mda-7 toxicity and prolonged animal survival. Future combinations of these approaches hold promise for developing a more effective therapy for kidney cancer