3 research outputs found

    Laser-induced Field Emission from Tungsten Tip: Optical Control of Emission Sites and Emission Process

    Full text link
    Field-emission patterns from a clean tungsten tip apex induced by femtosecond laser pulses have been investigated. Strongly asymmetric field-emission intensity distributions are observed depending on three parameters: (1) the polarization of the light, (2) the azimuthal and (3) the polar orientation of the tip apex relative to the laser incidence direction. In effect, we have realized an ultrafast pulsed field-emission source with site selectivity of a few tens of nanometers. Simulations of local fields on the tip apex and of electron emission patterns based on photo-excited nonequilibrium electron distributions explain our observations quantitatively. Electron emission processes are found to depend on laser power and tip voltage. At relatively low laser power and high tip voltage, field-emission after two-photon photo-excitation is the dominant process. At relatively low laser power and low tip voltage, photoemission processes are dominant. As the laser power increases, photoemission from the tip shank becomes noticeable.Comment: 12 pages, 12 figures, submitted to Physical Review

    Optical Control of Field-Emission Sites by Femtosecond Laser Pulses

    Full text link
    We have investigated field emission patterns from a clean tungsten tip apex induced by femtosecond laser pulses. Strongly asymmetric modulations of the field emission intensity distributions are observed depending on the polarization of the light and the laser incidence direction relative to the azimuthal orientation of tip apex. In effect, we have realized an ultrafast pulsed field-emission source with site selectivity on the 10 nm scale. Simulations of local fields on the tip apex and of electron emission patterns based on photo-excited nonequilibrium electron distributions explain our observations quantitatively.Comment: 4 pages, submitted to Physical Review Letter
    corecore