307 research outputs found

    Chemoenzymatic synthesis of the pH responsive surfactant octyl β-D-glucopyranoside uronic acid

    Get PDF
    Methodology was developed to expand the range of benign alkyl glycoside surfactants to include also anionic types. This was demonstrated possible through conversion of the glycoside to its carboxyl derivative. Specifically, octyl β-D-glucopyranoside (OG) was oxidized to the corresponding uronic acid (octyl β-D-glucopyranoside uronic acid, OG-COOH) using the catalyst system T. versicolor laccase/2,2,6,6-tetramethylpiperidinyloxy (TEMPO) and oxygen from air as oxidant. The effects of oxygen supply methodology, concentrations of laccase, TEMPO and OG as well as reaction temperature were evaluated. At 10 mM substrate concentration, the substrate was almost quantitatively converted into product and even at a substrate concentration of 60 mM, 85 % conversion was reached within 24 hours. The surfactant properties of OG-COOH were markedly dependent on pH. Foaming was only observed at low pH, while no foam was formed at pH values above 5.0. Thus, OG-COOH can be an attractive low-foaming surfactant, for example for cleaning applications and emulsification, in a wide pH range (pH 1.5-10.0)

    Preparation of two glycoside hydrolases for use in micro-aqueous media

    Get PDF
    Enzymatic synthesis of alkyl glycosides using glycoside hydrolases is well studied, but has yet to reach industrial scale, primarily due to limited yields. Reduced water content should increase yields by limiting the unwanted hydrolytic side reaction. However, previous studies have shown that a reduction in water content surprisingly favors hydrolysis over transglycosylation. In addition, glycoside hydrolases normally require a high degree of hydration to function efficiently. This study compares six enzyme preparation methods to improve resilience and activity of two glycoside hydrolases from Thermotoga neapolitana (TnBgl3B and TnBgl1A) in micro-aqueous hexanol. Indeed, when adsorbed onto Accurel MP-1000 both enzymes increasingly favored transglycosylation over hydrolysis at low hydration, in contrast to freeze-dried or untreated enzyme. Additionally, they displayed 17–70× higher reaction rates compared to freeze-dried enzyme at low water activity, while displaying comparable or lower activity for fully hydrated systems. These results provide valuable information for use of enzymes under micro-aqueous conditions and build toward utilizing the full synthetic potential of glycoside hydrolases

    Novel xylan degrading enzymes from polysaccharide utilizing loci of Prevotella copri DSM18205

    Get PDF
    Prevotella copri is a bacterium that can be found in the human gastrointestinal tract (GIT). The role of P. copri in the GIT is unclear, and elevated numbers of the microbe have been reported both in dietary fiber-induced improvement in glucose metabolism but also in conjunction with certain inflammatory conditions. These findings raised our interest in investigating the possibility of P. copri to grow on xylan, and identify the enzyme systems playing a role in digestion of xylan-based dietary fibers. Two xylan degrading polysaccharide utilizing loci (PUL10 and 15) were found in the genome, with three and eight glycoside hydrolase (GH) -encoding genes, respectively. Three of them were successfully produced in Escherichia coli: One extracellular enzyme from GH43 (subfamily 12, in PUL10, 60 kDa) and two enzymes from PUL15, one extracellular GH10 (41 kDa), and one intracellular GH43 (subfamily 137 kDa). Based on our results, we propose that in PUL15, GH10 (1) is an extracellular endo-1,4-β-xylanase, that hydrolazes mainly glucuronosylated xylan polymers to xylooligosaccharides (XOS); while, GH43_1 in the same PUL, is an intracellular β-xylosidase, catalyzing complete hydrolysis of the XOS to xylose. In PUL10, the characterized GH43_12 is an arabinofuranosidase, with a role in degradation of arabinoxylan, catalyzing removal of arabinose-residues on xylan.Fil: Linares Pastén, Javier A. Lund University. Biotechnology Department; SueciaFil: Hero, Johan Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Pisa, José Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Teixeira, Cristina. Lund University. Biotechnology Department; SueciaFil: Nyman, Margareta. Department Food Technology, Engineering And Nutrition; SueciaFil: Adlercreutz, Patrick. Lund University. Biotechnology Department; SueciaFil: Martinez, Maria Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Nordberg Karlsson, Eva. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentin

    Application of Iterative Robust Model-based Optimal Experimental Design for the Calibration of Biocatalytic Models

    Get PDF
    The aim of model calibration is to estimate unique parameter values from available experimental data, here applied to a biocatalytic process. The traditional approach of first gathering data followed by performing a model calibration is inefficient, since the information gathered during experimentation is not actively used to optimize the experimental design. By applying an iterative robust model-based optimal experimental design, the limited amount of data collected is used to design additional informative experiments. The algorithm is used here to calibrate the initial reaction rate of an ω-transaminase catalyzed reaction in a more accurate way. The parameter confidence region estimated from the Fisher Information Matrix is compared with the likelihood confidence region, which is not only more accurate but also a computationally more expensive method. As a result, an important deviation between both approaches is found, confirming that linearization methods should be applied with care for nonlinear models

    Use of artificial electron acceptors in oxidation reactions catalyzed by acetic acid bacteria

    Full text link
    The ability of several electron acceptors to promote the Gluconobacter oxydans catalyzed oxidation of glycerol was investigated. p-Benzoquinone was the most effective electron acceptor. The reaction rate obtained with p-benzoquinone was higher than the maximal rate with the natural electron acceptor, oxygen, in all the oxidation reactions tested

    Comparison of lipases and glycoside hydrolases as catalysts in synthesis reactions

    Get PDF
    Lipases and glycoside hydrolases have large similarities concerning reaction mechanisms. Acyl-enzyme intermediates are formed during lipase-catalyzed reactions and in an analogous way, retaining glycoside hydrolases form glycosyl-enzyme intermediates during catalysis. In both cases, the covalent enzyme intermediates can react with water or other nucleophiles containing hydroxyl groups. Simple alcohols are accepted as nucleophiles by both types of enzymes. Lipases are used very successfully in synthesis applications due to their efficiency in catalyzing reversed hydrolysis and transesterification reactions. On the other hand, synthesis applications of glycoside hydrolases are much less developed. Here, important similarities and differences between the enzyme groups are reviewed and approaches to reach high synthesis yields are discussed. Useful strategies include the use of low-water media, high nucleophile concentrations, as well as protein engineering to modify the selectivity of the enzymes. The transglycosylases, hydrolases which naturally catalyze mainly transfer reactions, are of special interest and might be useful guides for engineering of other hydrolases

    Activation of enzymes in organic media at low water activity by polyols and saccharides

    Full text link
    Horse liver alcohol dehydrogenase and α-chymotrypsin were deposited on a porous support material, Celite. After equilibration at a well-defined water activity, the catalytic activity was measured with diisopropyl ether as reaction medium. The effects of the presence of polyols and simple saccharides in the preparations were investigated. The additives caused a considerable increase in the amount of water bound to the preparation at a fixed water activity. At low water activities the catalytic activity was increased and at high water activity it was decreased by the additives. The presence of additives increased the ratio of alcoholysis-to-hydrolysis activity of chymotrypsin

    Novel biocatalyst for the asymmetric reduction of ketones : Permeabilized cells of Gluconobacter oxydans

    Full text link
    Gluconobacter oxydans (ATCC 621) were permeabilized with toluene and then lyophilized. This crude enzyme preparation was used to reduce eleven ketones to (S)-alcohols with high enantiomeric excess (for most alcohols 93%-99% e.e.). The coenzyme NADH was regenerated either by adding a second enzyme, formate dehydrogenase, and its substrate, formate, or with 2-butanol as a second substrate for the G. oxydans enzyme(s). With the first of these methods, almost complete conversion was achieved. Permeabilized cells immobilized in calcium alginate gel were used for 18 days without any significant loss of catalytic activity
    • …
    corecore