2 research outputs found

    Divergent Chemical Cues Elicit Seed Collecting by Ants in an Obligate Multi-Species Mutualism in Lowland Amazonia

    Get PDF
    In lowland Amazonian rainforests, specific ants collect seeds of several plant species and cultivate them in arboreal carton nests, forming species-specific symbioses called ant-gardens (AGs). In this obligate mutualism, ants depend on the plants for nest stability and the plants depend on ant nests for substrate and nutrients. AG ants and plants are abundant, dominant members of lowland Amazonian ecosystems, but the cues ants use to recognize the seeds are poorly understood. To address the chemical basis of the ant-seed interaction, we surveyed seed chemistry in nine AG species and eight non-AG congeners. We detected seven phenolic and terpenoid volatiles common to seeds of all or most of the AG species, but a blend of the shared compounds was not attractive to the AG ant Camponotus femoratus. We also analyzed seeds of three AG species (Anthurium gracile, Codonanthe uleana, and Peperomia macrostachya) using behavior-guided fractionation. At least one chromatographic fraction of each seed extract elicited retrieval behavior in C. femoratus, but the active fractions of the three plant species differed in polarity and chemical composition, indicating that shared compounds alone did not explain seed-carrying behavior. We suggest that the various AG seed species must elicit seed-carrying with different chemical cues

    Herbivory makes major contributions to ecosystem carbon and nutrient cycling in tropical forests

    No full text
    Abstract The functional role of herbivores in tropical rainforests remains poorly understood. We quantified the magnitude of, and underlying controls on, carbon, nitrogen and phosphorus cycled by invertebrate herbivory along a 2800 m elevational gradient in the tropical Andes spanning 12°C mean annual temperature. We find, firstly, that leaf area loss is greater at warmer sites with lower foliar phosphorus, and secondly, that the estimated herbivore-mediated flux of foliar nitrogen and phosphorus from plants to soil via leaf area loss is similar to, or greater than, other major sources of these nutrients in tropical forests. Finally, we estimate that herbivores consume a significant portion of plant carbon, potentially causing major shifts in the pattern of plant and soil carbon cycling. We conclude that future shifts in herbivore abundance and activity as a result of environmental change could have major impacts on soil fertility and ecosystem carbon sequestration in tropical forests
    corecore