19 research outputs found

    Gene expression profiling of melanoma cells – searching the haystack

    Get PDF
    Cancer is being increasingly recognized as a very heterogeneous disease, both within an individual tumor and within a tumor type and among tumor types. This heterogeneity is manifested both at the genetic and phenotypic level and determines the progression of disease and response to therapy. It is possible to see the heterogeneity in examples of differential disease progression and response to therapy of the same tumor type, as morphology does not always reveal underlying biology. The diagnosis of tumors by histopathological and morphological criteria cannot fully account for the variability seen in prognosis and therapy outcome. Here we review some recent concepts that have emerged from the genetic analysis of metastatic melanoma

    A Comprehensive Patient-Derived Xenograft Collection Representing the Heterogeneity of Melanoma

    Get PDF
    Therapy of advanced melanoma is changing dramatically. Following mutational and biological subclassification of this heterogeneous cancer, several targeted and immune therapies were approved and increased survival significantly. To facilitate further advancements through pre-clinical in vivo modeling, we have established 459 patient-derived xenografts (PDX) and live tissue samples from 384 patients representing the full spectrum of clinical, therapeutic, mutational, and biological heterogeneity of melanoma. PDX have been characterized using targeted sequencing and protein arrays and are clinically annotated. This exhaustive live tissue resource includes PDX from 57 samples resistant to targeted therapy, 61 samples from responders and non-responders to immune checkpoint blockade, and 31 samples from brain metastasis. Uveal, mucosal, and acral subtypes are represented as well. We show examples of pre-clinical trials that highlight how the PDX collection can be used to develop and optimize precision therapies, biomarkers of response, and the targeting of rare genetic subgroups

    Up-Regulated Expression of Zonula Occludens Protein-1 in Human Melanoma Associates with N-Cadherin and Contributes to Invasion and Adhesion

    No full text
    During the process of malignant transformation, nascent melanoma cells escape keratinocyte control through down-regulation of E-cadherin and instead communicate among themselves and with fibroblasts via N-cadherin-based cell-cell contacts. The zonula occludens (ZO) protein-1 is a membrane-associated component of both the tight and adherens junctions found at sites of cell-cell contact. In most cancers, levels of ZO-1 are typically down-regulated, leading to increased motility. Here we report the novel observation that ZO-1 expression is up-regulated in melanoma cells and is located at adherens junctions between melanoma cells and fibroblasts. Immunofluorescence and co-immunoprecipitation studies showed co-localization of ZO-1 with N-cadherin. Down-regulation of ZO-1 in melanoma cells through RNA interference produced marked changes in cell morphology—leading to a less-dendritic, more rounded phenotype. Consistent with a role in N-cadherin-based adhesion, RNAi-treated melanoma cells were less adherent and invasive when grown in a collagen gel. These data provide the first evidence that increased ZO-1 expression in melanoma contributes to the oncogenic behavior of this tumor and further illustrate that protein products of genes, such as ZO-1, can function in either a pro- or anti-oncogenic manner when expressed in different cellular contexts

    PLX4032, a potent inhibitor of the B-Raf V600E oncogene, selectively inhibits V600E-positive melanomas

    No full text
    Targeted intervention of the B-Raf V600E gene product that is prominent in melanoma has been met with modest success. Here, we characterize the pharmacological properties of PLX4032, a next-generation inhibitor with exquisite specificity against the V600E oncogene and striking anti-melanoma activity. PLX4032 induces potent cell cycle arrest, inhibits proliferation, and initiates apoptosis exclusively in V600E-positive cells in a variety of in vitro experimental systems; follow-up xenograft studies demonstrate extreme selectivity and efficacy against melanoma tumors bearing the V600E oncoproduct. The collective data support further exploration of PLX4032 as a candidate drug for patients with metastatic melanoma; accordingly, validation of PLX4032 as a therapeutic tool for patients with melanoma is now underway in advanced human (Phase III) clinical trials

    MAPK Activation Predicts Poor Outcome and the MEK Inhibitor, Selumetinib, Reverses Antiestrogen Resistance in ER-Positive High-Grade Serous Ovarian Cancer

    No full text
    OBJECTIVE: While 67% of high grade serous ovarian cancers (HGSOC) express the estrogen receptor (ER), most fail antiestrogen therapy. Since mitogen-activated protein kinases (MAPK) activation is frequent in ovarian cancer, we investigated if estrogen regulates MAPK and if MEK inhibition (MEKi) reverses anti-estrogen resistance. METHODS: Effects of MEKi (selumetinib), anti-estrogen (fulvestrant), or both were assayed in ER+ HGSOC in vitro and in xenografts. Response biomarkers were investigated by gene expression microarray and reverse phase protein array (RPPA). Genes differentially expressed in two independent primary HGSOCs datasets with high vs low pMAPK by RPPA were used to generate a “MAPK-activated gene signature”. Gene signature components reversed by MEKi were then identified. RESULTS: High intratumor pMAPK independently predicts decreased survival (HR = 1.7, CI>95% 1.3–2.2, p=0.0009) in 408 TCGA HGSOC. A differentially expressed “MAPK-activated” gene subset was also prognostic. “MAPK-activated genes” in HGSOC differ from those in breast cancer. Combined MEK and ER blockade showed greater anti-tumor effects in xenografts than monotherapy. Gene set enrichment analysis and RPPA showed dual therapy downregulated DNA replication and cell cycle drivers, and upregulated lysosomal gene sets. Selumetinib reversed expression of a subset of “MAPK-activated genes” in vitro and/or in xenografts. Three of these genes were prognostic for poor survival (p=0.000265) and warrant testing as a signature predictive of MEKi response. CONCLUSION: High pMAPK is independently prognostic and may underlie antiestrogen failure. Data support further evaluation of fulvestrant and selumetinib in ER+ HGSOC. The MAPK-activated HGSOC signature may help identify MEK inhibitor responsive tumors

    Active Notch1 Confers a Transformed Phenotype to Primary Human Melanocytes

    No full text
    The importance of MAPK signaling in melanoma is underscored by the prevalence of activating mutations in N-Ras and B-Raf; yet, clinical development of inhibitors of this pathway has been largely ineffective, suggesting that alternative oncogenes may also promote melanoma. Notch is an interesting candidate that has only been correlated with melanoma development and progression; a thorough assessment of tumor-initiating effects of activated Notch on human melanocytes would clarify the mounting correlative evidence and perhaps identify a novel target for an otherwise untreatable disease. Analysis of a substantial panel of cell lines and patient lesions demonstrated that Notch activity is significantly higher in melanomas than their non-transformed counterparts. The use of a constitutively-active, truncated Notch transgene construct (N IC ) was exploited to determine if Notch activation is a ‘driving’ event in melanocytic transformation or instead a ‘passenger’ event associated with melanoma progression. N IC -infected melanocytes displayed increased proliferative capacity and biological features more reminiscent of melanoma such as dysregulated cell adhesion and migration. Gene expression analyses supported these observations and aided in the identification of MCAM, an adhesion molecule associated with acquisition of the malignant phenotype, as a direct target of Notch transactivation. N IC -positive melanocytes grew at clonal density, proliferated in limiting media conditions, and also exhibited anchorage-independent growth suggesting that Notch, alone, is a transforming oncogene in human melanocytes, a phenomenon not previously described for any melanoma oncogene; this new information yields valuable insight into the basic epidemiology of melanoma and launches a realm of possibilities for drug intervention in this deadly disease
    corecore