157 research outputs found

    A noise-reduction GWAS analysis implicates altered regulation of neurite outgrowth and guidance in autism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome-wide Association Studies (GWAS) have proved invaluable for the identification of disease susceptibility genes. However, the prioritization of candidate genes and regions for follow-up studies often proves difficult due to false-positive associations caused by statistical noise and multiple-testing. In order to address this issue, we propose the novel GWAS noise reduction (GWAS-NR) method as a way to increase the power to detect true associations in GWAS, particularly in complex diseases such as autism.</p> <p>Methods</p> <p>GWAS-NR utilizes a linear filter to identify genomic regions demonstrating correlation among association signals in multiple datasets. We used computer simulations to assess the ability of GWAS-NR to detect association against the commonly used joint analysis and Fisher's methods. Furthermore, we applied GWAS-NR to a family-based autism GWAS of 597 families and a second existing autism GWAS of 696 families from the Autism Genetic Resource Exchange (AGRE) to arrive at a compendium of autism candidate genes. These genes were manually annotated and classified by a literature review and functional grouping in order to reveal biological pathways which might contribute to autism aetiology.</p> <p>Results</p> <p>Computer simulations indicate that GWAS-NR achieves a significantly higher classification rate for true positive association signals than either the joint analysis or Fisher's methods and that it can also achieve this when there is imperfect marker overlap across datasets or when the closest disease-related polymorphism is not directly typed. In two autism datasets, GWAS-NR analysis resulted in 1535 significant linkage disequilibrium (LD) blocks overlapping 431 unique reference sequencing (RefSeq) genes. Moreover, we identified the nearest RefSeq gene to the non-gene overlapping LD blocks, producing a final candidate set of 860 genes. Functional categorization of these implicated genes indicates that a significant proportion of them cooperate in a coherent pathway that regulates the directional protrusion of axons and dendrites to their appropriate synaptic targets.</p> <p>Conclusions</p> <p>As statistical noise is likely to particularly affect studies of complex disorders, where genetic heterogeneity or interaction between genes may confound the ability to detect association, GWAS-NR offers a powerful method for prioritizing regions for follow-up studies. Applying this method to autism datasets, GWAS-NR analysis indicates that a large subset of genes involved in the outgrowth and guidance of axons and dendrites is implicated in the aetiology of autism.</p

    An X chromosome-wide association study in autism families identifies TBL1X as a novel autism spectrum disorder candidate gene in males

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with a strong genetic component. The skewed prevalence toward males and evidence suggestive of linkage to the X chromosome in some studies suggest the presence of X-linked susceptibility genes in people with ASD.</p> <p>Methods</p> <p>We analyzed genome-wide association study (GWAS) data on the X chromosome in three independent autism GWAS data sets: two family data sets and one case-control data set. We performed meta- and joint analyses on the combined family and case-control data sets. In addition to the meta- and joint analyses, we performed replication analysis by using the two family data sets as a discovery data set and the case-control data set as a validation data set.</p> <p>Results</p> <p>One SNP, rs17321050, in the transducin β-like 1X-linked (<it>TBL1X</it>) gene [OMIM:300196] showed chromosome-wide significance in the meta-analysis (<it>P </it>value = 4.86 × 10<sup>-6</sup>) and joint analysis (<it>P </it>value = 4.53 × 10<sup>-6</sup>) in males. The SNP was also close to the replication threshold of 0.0025 in the discovery data set (<it>P </it>= 5.89 × 10<sup>-3</sup>) and passed the replication threshold in the validation data set (<it>P </it>= 2.56 × 10<sup>-4</sup>). Two other SNPs in the same gene in linkage disequilibrium with rs17321050 also showed significance close to the chromosome-wide threshold in the meta-analysis.</p> <p>Conclusions</p> <p><it>TBL1X </it>is in the Wnt signaling pathway, which has previously been implicated as having a role in autism. Deletions in the Xp22.2 to Xp22.3 region containing <it>TBL1X </it>and surrounding genes are associated with several genetic syndromes that include intellectual disability and autistic features. Our results, based on meta-analysis, joint analysis and replication analysis, suggest that <it>TBL1X </it>may play a role in ASD risk.</p

    Evidence of novel finescale structural variation at autism spectrum disorder candidate loci

    Get PDF
    Background: Autism spectrum disorders (ASD) represent a group of neurodevelopmental disorders characterized by a core set of social-communicative and behavioral impairments. Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain, acting primarily via the GABA receptors (GABR). Multiple lines of evidence, including altered GABA and GABA receptor expression in autistic patients, indicate that the GABAergic system may be involved in the etiology of autism. Methods: As copy number variations (CNVs), particularly rare and de novo CNVs, have now been implicated in ASD risk, we examined the GABA receptors and genes in related pathways for structural variation that may be associated with autism. We further extended our candidate gene set to include 19 genes and regions that had either been directly implicated in the autism literature or were directly related (via function or ancestry) to these primary candidates. For the high resolution CNV screen we employed custom-designed 244 k comparative genomic hybridization (CGH) arrays. Collectively, our probes spanned a total of 11 Mb of GABA-related and additional candidate regions with a density of approximately one probe every 200 nucleotides, allowing a theoretical resolution for detection of CNVs of approximately 1 kb or greater on average. One hundred and sixty-eight autism cases and 149 control individuals were screened for structural variants. Prioritized CNV events were confirmed using quantitative PCR, and confirmed loci were evaluated on an additional set of 170 cases and 170 control individuals that were not included in the original discovery set. Loci that remained interesting were subsequently screened via quantitative PCR on an additional set of 755 cases and 1,809 unaffected family members. Results: Results include rare deletions in autistic individuals at JAKMIP1, NRXN1, Neuroligin4Y, OXTR, and ABAT. Common insertion/deletion polymorphisms were detected at several loci, including GABBR2 and NRXN3. Overall, statistically significant enrichment in affected vs. unaffected individuals was observed for NRXN1 deletions. Conclusions: These results provide additional support for the role of rare structural variation in ASD

    Targeted massively parallel sequencing of autism spectrum disorder-associated genes in a case control cohort reveals rare loss-of-function risk variants

    Get PDF
    BACKGROUND: Autism spectrum disorder (ASD) is highly heritable, yet genome-wide association studies (GWAS), copy number variation screens, and candidate gene association studies have found no single factor accounting for a large percentage of genetic risk. ASD trio exome sequencing studies have revealed genes with recurrent de novo loss-of-function variants as strong risk factors, but there are relatively few recurrently affected genes while as many as 1000 genes are predicted to play a role. As such, it is critical to identify the remaining rare and low-frequency variants contributing to ASD. METHODS: We have utilized an approach of prioritization of genes by GWAS and follow-up with massively parallel sequencing in a case-control cohort. Using a previously reported ASD noise reduction GWAS analyses, we prioritized 837 RefSeq genes for custom targeting and sequencing. We sequenced the coding regions of those genes in 2071 ASD cases and 904 controls of European white ancestry. We applied comprehensive annotation to identify single variants which could confer ASD risk and also gene-based association analysis to identify sets of rare variants associated with ASD. RESULTS: We identified a significant over-representation of rare loss-of-function variants in genes previously associated with ASD, including a de novo premature stop variant in the well-established ASD candidate gene RBFOX1. Furthermore, ASD cases were more likely to have two damaging missense variants in candidate genes than controls. Finally, gene-based rare variant association implicates genes functioning in excitatory neurotransmission and neurite outgrowth and guidance pathways including CACNAD2, KCNH7, and NRXN1. CONCLUSIONS: We find suggestive evidence that rare variants in synaptic genes are associated with ASD and that loss-of-function mutations in ASD candidate genes are a major risk factor, and we implicate damaging mutations in glutamate signaling receptors and neuronal adhesion and guidance molecules. Furthermore, the role of de novo mutations in ASD remains to be fully investigated as we identified the first reported protein-truncating variant in RBFOX1 in ASD. Overall, this work, combined with others in the field, suggests a convergence of genes and molecular pathways underlying ASD etiology. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13229-015-0034-z) contains supplementary material, which is available to authorized users

    Copy Number Variants in Extended Autism Spectrum Disorder Families Reveal Candidates Potentially Involved in Autism Risk

    Get PDF
    Copy number variations (CNVs) are a major cause of genetic disruption in the human genome with far more nucleotides being altered by duplications and deletions than by single nucleotide polymorphisms (SNPs). In the multifaceted etiology of autism spectrum disorders (ASDs), CNVs appear to contribute significantly to our understanding of the pathogenesis of this complex disease. A unique resource of 42 extended ASD families was genotyped for over 1 million SNPs to detect CNVs that may contribute to ASD susceptibility. Each family has at least one avuncular or cousin pair with ASD. Families were then evaluated for co-segregation of CNVs in ASD patients. We identified a total of five deletions and seven duplications in eleven families that co-segregated with ASD. Two of the CNVs overlap with regions on 7p21.3 and 15q24.1 that have been previously reported in ASD individuals and two additional CNVs on 3p26.3 and 12q24.32 occur near regions associated with schizophrenia. These findings provide further evidence for the involvement of ICA1 and NXPH1 on 7p21.3 in ASD susceptibility and highlight novel ASD candidates, including CHL1, FGFBP3 and POUF41. These studies highlight the power of using extended families for gene discovery in traits with a complex etiology

    SORL1 mutations in early- and late-onset Alzheimer disease.

    Get PDF
    OBJECTIVE: To characterize the clinical and molecular effect of mutations in the sortilin-related receptor (SORL1) gene. METHODS: We performed whole-exome sequencing in early-onset Alzheimer disease (EOAD) and late-onset Alzheimer disease (LOAD) families followed by functional studies of select variants. The phenotypic consequences associated with SORL1 mutations were characterized based on clinical reviews of medical records. Functional studies were completed to evaluate β-amyloid (Aβ) production and amyloid precursor protein (APP) trafficking associated with SORL1 mutations. RESULTS: SORL1 alterations were present in 2 EOAD families. In one, a SORL1 T588I change was identified in 4 individuals with AD, 2 of whom had parkinsonian features. In the second, an SORL1 T2134 alteration was found in 3 of 4 AD cases, one of whom had postmortem Lewy bodies. Among LOAD cases, 4 individuals with either SORL1 A528T or T947M alterations had parkinsonian features. Functionally, the variants weaken the interaction of the SORL1 protein with full-length APP, altering levels of Aβ and interfering with APP trafficking. CONCLUSIONS: The findings from this study support an important role for SORL1 mutations in AD pathogenesis by way of altering Aβ levels and interfering with APP trafficking. In addition, the presence of parkinsonian features among select individuals with AD and SORL1 mutations merits further investigation

    ABCA7 frameshift deletion associated with Alzheimer disease in African Americans

    Get PDF
    Objective: To identify a causative variant(s) that may contribute to Alzheimer disease (AD) in African Americans (AA) in the ATP-binding cassette, subfamily A (ABC1), member 7 (ABCA7) gene, a known risk factor for late-onset AD. Methods: Custom capture sequencing was performed on ∼150 kb encompassing ABCA7 in 40 AA cases and 37 AA controls carrying the AA risk allele (rs115550680). Association testing was performed for an ABCA7 deletion identified in large AA data sets (discovery n = 1,068; replication n = 1,749) and whole exome sequencing of Caribbean Hispanic (CH) AD families. Results: A 44-base pair deletion (rs142076058) was identified in all 77 risk genotype carriers, which shows that the deletion is in high linkage disequilibrium with the risk allele. The deletion was assessed in a large data set (531 cases and 527 controls) and, after adjustments for age, sex, and APOE status, was significantly associated with disease (p = 0.0002, odds ratio [OR] = 2.13 [95% confidence interval (CI): 1.42–3.20]). An independent data set replicated the association (447 cases and 880 controls, p = 0.0117, OR = 1.65 [95% CI: 1.12–2.44]), and joint analysis increased the significance (p = 1.414 × 10−5, OR = 1.81 [95% CI: 1.38–2.37]). The deletion is common in AA cases (15.2%) and AA controls (9.74%), but in only 0.12% of our non-Hispanic white cohort. Whole exome sequencing of multiplex, CH families identified the deletion cosegregating with disease in a large sibship. The deleted allele produces a stable, detectable RNA strand and is predicted to result in a frameshift mutation (p.Arg578Alafs) that could interfere with protein function. Conclusions: This common ABCA7 deletion could represent an ethnic-specific pathogenic alteration in AD

    Investigation of autism and GABA receptor subunit genes in multiple ethnic groups

    Get PDF
    Autism is a neurodevelopmental disorder of complex genetics, characterized by impairment in social interaction and communication, as well as repetitive behavior. Multiple lines of evidence, including alterations in levels of GABA and GABA receptors in autistic patients, indicate that the GABAergic system, which is responsible for synaptic inhibition in the adult brain, may be involved in autism. Previous studies in our lab indicated association of noncoding single nucleotide polymorphisms (SNPs) within a GABA receptor subunit gene on chromosome 4, GABRA4, and interaction between SNPs in GABRA4 and GABRB1 (also on chromosome 4), within Caucasian autism patients. Studies of genetic variation in African-American autism families are rare. Analysis of 557 Caucasian and an independent population of 54 African-American families with 35 SNPs within GABRB1 and GABRA4 strengthened the evidence for involvement of GABRA4 in autism risk in Caucasians (rs17599165, p=0.0015; rs1912960, p=0.0073; and rs17599416, p=0.0040) and gave evidence of significant association in African-Americans (rs2280073, p=0.0287 and rs16859788, p=0.0253). The GABRA4 and GABRB1 interaction was also confirmed in the Caucasian dataset (most significant pair, rs1912960 and rs2351299; p=0.004). Analysis of the subset of families with a positive history of seizure activity in at least one autism patient revealed no association to GABRA4; however, three SNPs within GABRB1 showed significant allelic association; rs2351299 (p=0.0163), rs4482737 (p=0.0339), and rs3832300 (p=0.0253). These results confirmed our earlier findings, indicating GABRA4 and GABRB1 as genes contributing to autism susceptibility, extending the effect to multiple ethnic groups and suggesting seizures as a stratifying phenotype

    REPORT Whole-Exome Sequencing Links a Variant in DHDDS to Retinitis Pigmentosa

    Get PDF
    Increasingly, mutations in genes causing Mendelian disease will be supported by individual and small families only; however, exome sequencing studies have thus far focused on syndromic phenotypes characterized by low locus heterogeneity. In contrast, retinitis pigmentosa (RP) is caused by &gt;50 known genes, which still explain only half of the clinical cases. In a single, one-generation, nonsyndromic RP family, we have identified a gene, dehydrodolichol diphosphate synthase (DHDDS), demonstrating the power of combining whole-exome sequencing with rapid in vivo studies. DHDDS is a highly conserved essential enzyme for dolichol synthesis, permitting global N-linked glycosylation. Zebrafish studies showed virtually identical photoreceptor defects as observed with N-linked glycosylation-interfering mutations in the light-sensing protein rhodopsin. The identified Lys42Glu variant likely arose from an ancestral founder, because eight of the nine identified alleles in 27,174 control chromosomes were of confirmed Ashkenazi Jewish ethnicity. These findings demonstrate the power of exome sequencing linked to functional studies when faced with challenging study designs and, importantly, link RP to the pathways of N-linked glycosylation, which promise new avenues for therapeutic interventions. Retinitis pigmentosa (RP) refers to a large group of genetically heterogeneous retinal degenerative disorders characterized by early rod photoreceptor dysfunction followed by progressive rod and cone photoreceptor dysfunction and photoreceptor death (MIM 268000). Impaired night vision followed by impaired peripheral vision generally starts in adolescence to young adulthood, with subsequent impaired central vision in later life. We studied a family of Ashkenazi Jewish (AJ) origin in which three out of four siblings (two females and one male) were diagnosed with RP in their teenage years ( To identify the genetic cause of this likely recessive subtype of RP, we screened all genes known to harbor RP mutations and found that they were negative for mutations. Classic linkage approaches were not applicable because of the size of the nonconsanguineous family, so we performed whole-exome sequencing in the three affected siblings and one unaffected sibling (Whole Human Exome Capture kit, Roche). We produced approximately 10 gigabases (Gb) of paired-end 75 bp sequence reads per individual on the Illumina GAII platform. To test the overall quality of the sequence data, we compared the genotypes of variants found in the sequence data to variants derived from genotyping via a genome-wide SN
    corecore