2 research outputs found

    The effect of insulin-loaded chitosan particle-aggregated scaffolds in chondrogenic differentiation

    Get PDF
    Osteochondral defect repair requires a tissue engineering approach that aims at mimicking the physiological properties and structure of two different tissues (cartilage and bone) using a scaffold–cell construct. One ideal approach would be to engineer in vitro a hybrid material using a single-cell source. For that purpose, the scaffold should be able to provide the adequate biochemical cues to promote the selective but simultaneous differentiation of both tissues. In this work, attention was paid primarily to the chondrogenic differentiation by focusing on the development of polymeric systems that provide biomolecules release to induce chondrogenic differentiation. For that, different formulations of insulin-loaded chitosan particle–aggregated scaffolds were developed as a potential model system for cartilage and osteochondral tissue engineering applications using insulin as a potent bioactive substance known to induce chondrogenic differentiation. The insulin encapsulation efficiency was shown to be high with values of 70.37!0.8%, 84.26!1.76%, and 87.23!1.58% for loadings of 0.05%, 0.5%, and 5%, respectively. The in vitro release profiles were assessed in physiological conditions mimicking the cell culture procedures and quantified by Micro-BCA! protein assay. Different release profiles were obtained that showed to be dependent on the initial insulin-loading percentage. Further, the effect on prechondrogenic ATDC5 cells was investigated for periods up to 4 weeks by studying the influence of these release systems on cell morphology, DNA and glycosaminoglycan content, histology, and gene expression of collagen types I and II, Sox-9, and aggrecan assessed by real-time polymerase chain reaction. When compared with control conditions (unloaded scaffolds cultured with the standard chondrogenic-inducing medium), insulin-loaded scaffolds upregulated the Sox-9 and aggrecan expression after 4 weeks of culture. From the overall results, it is reasonable to conclude that the developed loaded scaffolds when seeded with ATDC5 can provide biochemical cues for chondrogenic differentiation. Among the tested formulations, the higher insulin-loaded system (5%) was the most effective in promoting chondrogenic differentiation.The authors would like to acknowledge the Portuguese Foundation for Science and Technology for the Ph. D. Grant to Patricia B. Malafaya (SFRH/BD/11155/2002). This work was partially supported and carried out under the scope of the European STREP Project HIPPOCRATES (NMP3-CT-2003-505758) and European NoE EXPERTISSUES (NMP3CT-2004-500283). The authors also like to acknowledge the Life and Health Sciences Research Institute (ICVS), University of Minho, for the use of their facilities, namely, to Luis Martins for histological sections slicing and H&E stain processing

    The Role of Lipase and α-Amylase in the Degradation of Starch/Poly(ɛ-Caprolactone) Fiber Meshes and the Osteogenic Differentiation of Cultured Marrow Stromal Cells

    No full text
    The present work studies the influence of hydrolytic enzymes (α-amylase or lipase) on the degradation of fiber mesh scaffolds based on a blend of starch and poly(ɛ-caprolactone) (SPCL) and the osteogenic differentiation of osteogenic medium–expanded rat bone marrow stromal cells (MSCs) and subsequent formation of extracellular matrix on these scaffolds under static culture conditions. The biodegradation profile of SPCL fiber meshes was investigated using enzymes that are specifically responsible for the enzymatic hydrolysis of SPCL using concentrations similar to those found in human serum. These degradation studies were performed under static and dynamic conditions. After several degradation periods (3, 7, 14, 21, and 30 days), weight loss measurements and micro-computed tomography analysis (specifically porosity, interconnectivity, mean pore size, and fiber thickness) were performed. The SPCL scaffolds were seeded with rat MSCs and cultured for 8 and 16 days using complete osteogenic media with and without enzymes (α-amylase or lipase). Results indicate that culture medium supplemented with enzymes enhanced cell proliferation after 16 days of culture, whereas culture medium without enzymes did not. No calcium was detected in groups cultured with α-amylase or without enzymes after each time period, although groups cultured with lipase presented calcium deposition after the eighth day, showing a significant increase at the sixteenth day. Lipase appears to positively influence osteoblastic differentiation of rat MSCs and to enhance matrix mineralization. Furthermore, scanning electron microscopy images showed that the enzymes did not have a deleterious effect on the three-dimensional structure of SPCL fiber meshes, meaning that the scaffolds did not lose their structural integrity after 16 days. Confocal micrographs have shown cells to be evenly distributed and infiltrated within the SPCL fiber meshes up to 410 μm from the surface. This study demonstrates that supplementation of culture media with lipase holds great potential for the generation of bone tissue engineering constructs from MSCs seeded onto SPCL fiber meshes, because lipase enhances the osteoblastic differentiation of the seeded MSCs and promotes matrix mineralization without harming the structural integrity of the meshes over 16 days of culture
    corecore