1,868 research outputs found

    Improved Cosmological Constraints from Gravitational Lens Statistics

    Full text link
    We combine the Cosmic Lens All-Sky Survey (CLASS) with new Sloan Digital Sky Survey (SDSS) data on the local velocity dispersion distribution function of E/S0 galaxies, ϕ(σ)\phi(\sigma), to derive lens statistics constraints on ΩΛ\Omega_\Lambda and Ωm\Omega_m. Previous studies of this kind relied on a combination of the E/S0 galaxy luminosity function and the Faber-Jackson relation to characterize the lens galaxy population. However, ignoring dispersion in the Faber-Jackson relation leads to a biased estimate of ϕ(σ)\phi(\sigma) and therefore biased and overconfident constraints on the cosmological parameters. The measured velocity dispersion function from a large sample of E/S0 galaxies provides a more reliable method for probing cosmology with strong lens statistics. Our new constraints are in good agreement with recent results from the redshift-magnitude relation of Type Ia supernovae. Adopting the traditional assumption that the E/S0 velocity function is constant in comoving units, we find a maximum likelihood estimate of ΩΛ=0.74\Omega_\Lambda = 0.74--0.78 for a spatially flat unvierse (where the range reflects uncertainty in the number of E/S0 lenses in the CLASS sample), and a 95% confidence upper bound of ΩΛ<0.86\Omega_\Lambda<0.86. If ϕ(σ)\phi(\sigma) instead evolves in accord with extended Press-Schechter theory, then the maximum likelihood estimate for ΩΛ\Omega_\Lambda becomes 0.72--0.78, with the 95% confidence upper bound ΩΛ<0.89\Omega_\Lambda<0.89. Even without assuming flatness, lensing provides independent confirmation of the evidence from Type Ia supernovae for a nonzero dark energy component in the universe.Comment: 35 pages, 15 figures, to be published in Ap

    Detection of x-rays from galaxy groups associated with the gravitationally lensed systems PG 1115+080 and B1422+231

    Full text link
    Gravitational lenses that produce multiple images of background quasars can be an invaluable cosmological tool. Deriving cosmological parameters, however, requires modeling the potential of the lens itself. It has been estimated that up to a quarter of lensing galaxies are associated with a group or cluster which perturbs the gravitational potential. Detection of X-ray emission from the group or cluster can be used to better model the lens. We report on the first detection in X-rays of the group associated with the lensing system PG 1115+080 and the first X-ray image of the group associated with the system B1422+231. We find a temperature and rest-frame luminosity of 0.8 +/- 0.1 keV and 7 +/- 2 x 10^{42} ergs/s for PG 1115+080 and 1.0 +infty/-0.3 keV and 8 +/- 3 x 10^{42} ergs/s for B1422+231. We compare the spatial and spectral characteristics of the X-ray emission to the properties of the group galaxies, to lens models, and to the general properties of groups at lower redshift.Comment: Accepted for publication in ApJ. 17 pages, 5 figures. Minor changes to tex
    • …
    corecore