1,868 research outputs found
Recommended from our members
Texas Integrated Child Support System: Final Evaluation Report
The Ray Marshall Center is conducting a program evaluation to measure the impacts of the Integrated Child Support System (ICSS) that requires those getting divorced or separated to be referred to the Texas Office of the Attorney General (OAG) for IV-D child support services. Operating under a waiver from the federal Office of Child Support Enforcement (OCSE) in 17 counties, the ICSS changes the default action from opt-in to opt-out in order to increase participation in IV-D services, raise child support compliance, and avoid the accumulation of child support debt.The evaluation will report on child support compliance over time, including amount of payment and stability of payment as well as enforcement actions taken, cost effectiveness, and reasons parents choose to opt out.Researchers will conduct the waiver evaluation using a combination of random assignment and comparison site evaluation designs to measure the impacts of the waiver at statewide and county-level operational scales in Texas. The evaluation will use multiple data sets, including OAG administrative records data for determining child support case characteristics, child support obligations, collections, and enforcement actions; Unemployment Insurance (UI) quarterly wage records, U.S. Census data, county level child support data, and other data sources.Texas Office of the Attorney General, Office of Child Support EnforcementRay Marshall Center for the Study of Human Resource
Improved Cosmological Constraints from Gravitational Lens Statistics
We combine the Cosmic Lens All-Sky Survey (CLASS) with new Sloan Digital Sky
Survey (SDSS) data on the local velocity dispersion distribution function of
E/S0 galaxies, , to derive lens statistics constraints on
and . Previous studies of this kind relied on a
combination of the E/S0 galaxy luminosity function and the Faber-Jackson
relation to characterize the lens galaxy population. However, ignoring
dispersion in the Faber-Jackson relation leads to a biased estimate of
and therefore biased and overconfident constraints on the
cosmological parameters. The measured velocity dispersion function from a large
sample of E/S0 galaxies provides a more reliable method for probing cosmology
with strong lens statistics. Our new constraints are in good agreement with
recent results from the redshift-magnitude relation of Type Ia supernovae.
Adopting the traditional assumption that the E/S0 velocity function is constant
in comoving units, we find a maximum likelihood estimate of --0.78 for a spatially flat unvierse (where the range reflects uncertainty
in the number of E/S0 lenses in the CLASS sample), and a 95% confidence upper
bound of . If instead evolves in accord
with extended Press-Schechter theory, then the maximum likelihood estimate for
becomes 0.72--0.78, with the 95% confidence upper bound
. Even without assuming flatness, lensing provides
independent confirmation of the evidence from Type Ia supernovae for a nonzero
dark energy component in the universe.Comment: 35 pages, 15 figures, to be published in Ap
Detection of x-rays from galaxy groups associated with the gravitationally lensed systems PG 1115+080 and B1422+231
Gravitational lenses that produce multiple images of background quasars can
be an invaluable cosmological tool. Deriving cosmological parameters, however,
requires modeling the potential of the lens itself. It has been estimated that
up to a quarter of lensing galaxies are associated with a group or cluster
which perturbs the gravitational potential. Detection of X-ray emission from
the group or cluster can be used to better model the lens. We report on the
first detection in X-rays of the group associated with the lensing system PG
1115+080 and the first X-ray image of the group associated with the system
B1422+231. We find a temperature and rest-frame luminosity of 0.8 +/- 0.1 keV
and 7 +/- 2 x 10^{42} ergs/s for PG 1115+080 and 1.0 +infty/-0.3 keV and 8 +/-
3 x 10^{42} ergs/s for B1422+231. We compare the spatial and spectral
characteristics of the X-ray emission to the properties of the group galaxies,
to lens models, and to the general properties of groups at lower redshift.Comment: Accepted for publication in ApJ. 17 pages, 5 figures. Minor changes
to tex
- …