8,602 research outputs found
A Survey on Joint Object Detection and Pose Estimation using Monocular Vision
In this survey we present a complete landscape of joint object detection and
pose estimation methods that use monocular vision. Descriptions of traditional
approaches that involve descriptors or models and various estimation methods
have been provided. These descriptors or models include chordiograms,
shape-aware deformable parts model, bag of boundaries, distance transform
templates, natural 3D markers and facet features whereas the estimation methods
include iterative clustering estimation, probabilistic networks and iterative
genetic matching. Hybrid approaches that use handcrafted feature extraction
followed by estimation by deep learning methods have been outlined. We have
investigated and compared, wherever possible, pure deep learning based
approaches (single stage and multi stage) for this problem. Comprehensive
details of the various accuracy measures and metrics have been illustrated. For
the purpose of giving a clear overview, the characteristics of relevant
datasets are discussed. The trends that prevailed from the infancy of this
problem until now have also been highlighted.Comment: Accepted at the International Joint Conference on Computer Vision and
Pattern Recognition (CCVPR) 201
Mass sensing using an amorphous silicon MEMS resonator
Bilayer micro-bridge resonators of amorphous silicon and titanium were fabricated on a glass substrate at 100Ā°C by surface micromachining using an aluminum sacrificial layer. Au square patterns with sub-micrometer dimensions were patterned on top of the microresonators. These Au squares allowed specific immobilization of thiolated single strand DNA probe oligonucleotides. The frequency response of the electrostatically-actuated resonators was measured optically. The mass loading effect of the Au squares and of the immobilized ssDNA probes were determined by the shift in the resonance frequency of the micro-bridge resonators
A novel fluorescent "turn-on" chemosensor for nanomolar detection of Fe(III) from aqueous solution and its application in living cells imaging
An electronically active and spectral sensitive fluorescent āturn-onā chemosensor (BTP-1) based on the benzo-thiazolo-pyrimidine unit was designed and synthesized for the highly selective and sensitive detection of FeĀ³āŗ from aqueous medium. With FeĀ³āŗ, the sensor BTP-1 showed a remarkable fluorescence enhancement at 554 nm (Ī»ex=314 nm) due to the inhibition of photo-induced electron transfer. The sensor formed a host-guest complex in 1:1 stoichiometry with the detection limit down to 0.74 nM. Further, the sensor was successfully utilized for the qualitative and quantitative intracellular detection of FeĀ³āŗ in two liver cell lines i.e., HepG2 cells (human hepatocellular liver carcinoma cell line) and HL-7701 cells (human normal liver cell line) by a confocal imaging technique
Iris Recognition and Automated Eye Tracking
Physiological and behavioral characteristics of individuals that distinguish one person from the others. These characteristics are different in each person Iris is the best characteristic that can be used for personās identification and authentication in comparison with fingerprints, face, voice, and signature. The iris pattern is different between the right and left eye of the same person. For this recognition system we have used MATLAB tool. For iris recognition first of all database will be created in MATLAB using webcam. Then iris localization is done, for iris identification. After localization normalization and segmentation will performed, for that hough transform algorithm implemented. In last binarization of image is performed. Then binary output is compared with database imageās binary value. From comparison recognition is done, we can identify whether person is authorized or not
DEMO: Simulation of Realistic Mobility Model and Implementation of 802.11p (DSRC) for Vehicular Networks (VANET)
An ad hoc network of vehicles (VANET) consists of vehicles that exchange
information via radio in order to improve road safety, traffic management and
do better distribution of traffic load in time and space. Along with this it
allows Internet access for passengers and users of vehicles. A significant
characteristic while studying VANETs is the requirement of having a mobility
model that gives aspects of real vehicular traffic. These scenarios play an
important role in performance of VANETs. In our paper we have demonstration and
description of generating realistic mobility model using various tools such as
eWorld, OpenStreetMap, SUMO and TraNS. Generated mobility scenario is added to
NS-2.34 (Network Simulator) for analysis of DSR and AODV routing protocol under
802.11p (DSRC/WAVE) and 802.11a. Results after analysis shows 802.11p is more
suitable than 802.11a for VANET.Comment: 4 pages, 6 figures, International Journal of Computer Applicatio
- ā¦