15,655 research outputs found
Adsorption of common solvent molecules on graphene and MoS from first-principles
Solvents are an essential element in the production and processing of
two-dimensional (2D) materials. For example, the liquid phase exfoliation of
layered materials requires a solvent to prevent the resulting monolayers from
re-aggregating, while solutions of functional atoms and molecules are routinely
used to modify the properties of the layers. It is generally assumed that these
solvents do not interact strongly with the layer and so their effects can be
neglected. Yet experimental evidence has suggested that explicit atomic-scale
interactions between the solvent and layered material may play a crucial role
in exfoliation and cause unintended electronic changes in the layer. Little is
known about the precise nature of the interaction between the solvent molecules
and the 2D layer. Here, we use density functional theory calculations to
determine the adsorption configuration and binding energy of a variety of
common solvent molecules, both polar and non-polar, on two of the most popular
2D materials, namely graphene and MoS. We show that these molecules are
physisorbed on the surface with negligible charge transferred between them. We
find that the adsorption strength of the different molecules is independent of
the polar nature of the solvent. However, we show the molecules induce a
significant charge rearrangement at the interface after adsorption as a result
of polar bonds in the molecule.Comment: 8 pages, 6 figure
A Developmentally Regulated Deletion Element with Long Terminal Repeats Has \u3cem\u3eCis\u3c/em\u3e-Acting Sequences in the Flanking DNA
Approximately 6000 specific DNA deletion events occur during development of the somatic macronucleus of the ciliate Tetrahymena. The eliminated Tlr1 element is 13 kb or more in length and has an 825 bp inverted repeat near the rearrangement junctions. A functional analysis of the cis-acting sequences required for Tlr1 rearrangement was performed. A construct consisting of the entire inverted repeat and several hundred base pairs of flanking DNA on each side was rearranged accurately in vivo and displayed junctional variability similar to the chromosomal Tlr1 rearrangement. Thus, 11 kb or more of internal element DNA is not required in cis for DNA rearrangement. A second construct with only 51 bp of Tetrahymena DNA flanking the right junction underwent aberrant rearrangement. Thus, a signal for determination of the Tlr1 junction is located in the flanking DNA, 51 bp or more from the right junction. Within the Tlr1 inverted repeat are 19 bp tandem repeats. A construct with the 19mer repeat region deleted from the right half of the inverted repeat utilized normal rearrangement junctions. Thus, despite its transposon-like structure, Tlr1 is similar to other DNA rearrangements in Tetrahymena in possessing cis-acting sequences outside the deleted DNA
Hyperinsulinemia and insulin resistance : What comes first ?
Background

1)	Classical explanation :
Classical explanation of diabetic pathophysiology states that obesity induced insulin resistance develops first and is followed by compensatory hyperinsulinnemia. Further insulin resistance leads to prolonged, increased secretary demand on beta cells leading to subsequent secondary beta cell failure, giving rise to hyperglycaemia and diabetes^2^.

2)	 Neurobehavioral origin hypothesis :
The Neurobehavioral origin hypothesis suggests that insulin resistance mediates a shift from muscle dependent (soldier) to brain dependent (diplomat) strategies of making a livelihood. If nutrient limitation affects intrauterine development, brain development is the least affected among all the organs^4,5^. As a result, in IUGR babies muscle weight is poor but the brain is relatively well developed. Such a person is more likely to be a successful diplomat rather than a soldier and insulin resistance is adaptive for such an individual^3^. Since insulin is involved in brain development and cognitive functions, higher levels of insulin are needed. As insulin is having strong anti-lipolytic effect, hyperinsulinnemia is followed by subsequent excess fat accumulation. Also compensatory insulin resistance is needed to avoid hypoglycemia. This hypothesis predicts a reverse order of pathophysiology i.e. primary hyperinsulinnemia followed by compensatory insulin resistance^3^

Objective-
To determine in diabetes whether hyperinsulinnemia develops first or insulin resistance develops first.

Methods :
We searched literature for studies that investigated directly or indirectly the sequence of development of hyperinsulinnemia and insulin resistance in humans and animal models from an early stage. Meta-analysis was conducted on published data.

Results-
1)	In low birth weight neonates in humans as well as in rat models, hyperinsulinnemia is found at very early stage.^6^
2)	Development of insulin resistance is preceded by hyperinsulinnemia in mice, rats as well as in humans.^7, 8^
3)	In normoglycaemic hyperinsulinemia state if insulin production is suppressed insulin sensitivity increases rapidly maintaining the normoglycaemic state.^9,10^
4)	Beta cell expansion beginning in intrauterine life is independent of glucose, Insulin and Insulin receptors.^6^


Conclusion-
All the four lines of evidence indicate that hyperinsulinnemia precedes insulin resistance supporting the predictions of neurobehavioral origin hypothesis over the orthodox view.



References :
1)	DeFronzo RA, Ferrannini E (1991). Diabetes Care 14:173-194
2)	Kruszynska YT, Olefsky JM (1996). J Investig Med 44: 413-428.
3)	Watve MG, Yajnik CY (2007). BMC Evolutionary Biology.7: 61-74.
 4) Winick M, Rosso P, Waterlow JC (1970). Exp Neurol, 26:393-400.
 5) Winick M. (1969) J Pediatr,74:667-679.
 6) Chakravarthy MV et.al. (2008) Diabetes, 57:2698-2707.
 7) Ramin A et. al. (1998) J Clin Endo and Met, 83 :1911-1915.
 8) Hansen BC (1990) Am J Physiol Regul Integr Comp Physiol 259: 612-617.
 9) Stanley L (1981) Life Sciences, 28: 1829-1840.
 10) Ratzmann KP et. al. (1983) Int J Obes, 7 : 453-458


- β¦