1,066 research outputs found

    Relativistic harmonic oscillator model for quark stars

    Full text link
    The relativistic harmonic oscillator (RHO) model of hadrons is used to study quark stars. The mass-radius relationship is obtained and compared with bag model of quark star, using Tolman-Oppenheimer-Volkoff equation. In this model, the outward degenerate pressure due to discrete Landau levels and Landau degeneracy balances the inward gravitational pressure. Where as in bag model the degenerate pressure is due to the standard continuum levels which balances the combined inward pressure due to gravitation and bag pressure. So in RHO model, the confinement effect is included in the degenerate pressure. We found a qualitative similarity, but quantitative differences in mass-radius relationship of quark stars in these two models. Masses and radii are relatively larger and the central energy densities, required for stable quark stars, are lower in RHO model than that of bag model.Comment: 7 pages, 1 figure, articl

    Dynamical instability of a spin spiral in an interacting Fermi gas as a probe of the Stoner transition

    Full text link
    We propose an experiment to probe ferromagnetic phenomena in an ultracold Fermi gas, while alleviating the sensitivity to three-body loss and competing many-body instabilities. The system is initialized in a small pitch spin spiral, which becomes unstable in the presence of repulsive interactions. To linear order the exponentially growing collective modes exhibit critical slowing down close to the Stoner transition point. Also, to this order, the dynamics are identical on the paramagnetic and ferromagnetic sides of the transition. However, we show that scattering off the exponentially growing modes qualitatively alters the collective mode structure. The critical slowing down is eliminated and in its place a new unstable branch develops at large wave vectors. Furthermore, long-wavelength instabilities are quenched on the paramagnetic side of the transition. We study the experimental observation of the instabilities, specifically addressing the trapping geometry and how phase-contrast imaging will reveal the emerging domain structure. These probes of the dynamical phenomena could allow experiments to detect the transition point and distinguish between the paramagnetic and ferromagnetic regimes

    Reply to "Comment on `Quenches in quantum many-body systems: One-dimensional Bose-Hubbard model reexamined' ''

    Full text link
    In his Comment [see preceding Comment, Phys. Rev. A 82, 037601 (2010)] on the paper by Roux [Phys. Rev. A 79, 021608(R) (2009)], Rigol argued that the energy distribution after a quench is not related to standard statistical ensembles and cannot explain thermalization. The latter is proposed to stem from what he calls the eigenstate thermalization hypothesis and which boils down to the fact that simple observables are expected to be smooth functions of the energy. In this Reply, we show that there is no contradiction or confusion between the observations and discussions of Roux and the expected thermalization scenario discussed by Rigol. In addition, we emphasize a few other important aspects, in particular the definition of temperature and the equivalence of ensemble, which are much more difficult to show numerically even though we believe they are essential to the discussion of thermalization. These remarks could be of interest to people interested in the interpretation of the data obtained on finite-size systems.Comment: 3 page

    Theory of cooling by flow through narrow pores

    Get PDF
    We consider the possibility of adding a stage to a dilution refrigerator to provide additional cooling by ``filtering out'' hot atoms. Three methods are considered: 1) Effusion, where holes having diameters larger than a mean-free path allow atoms to pass through easily; 2) Particle waveguide-like motion using very narrow channels that greatly restrict the quantum states of the atoms in a channel. 3) Wall-limited diffusion through channels, in which the wall scattering is disordered so that local density equilibrium is established in a channel. We assume that channel dimension are smaller than the mean-free path for atom-atom interactions. The particle waveguide and the wall-limited diffusion methods using channels on order of the de Broglie wavelength give cooling. Recent advances in nano-filters give this method some hope of being practical.Comment: 10 pages, 3 figures. Corrected typos and made some minor wording change

    Viscosity calculated in simulations of strongly-coupled dusty plasmas with gas friction

    Full text link
    A two-dimensional strongly-coupled dusty plasma is modeled using Langevin and frictionless molecular dynamical simulations. The static viscosity η\eta and the wave-number-dependent viscosity η(k)\eta(k) are calculated from the microscopic shear in the random motion of particles. A recently developed method of calculating the wave-number-dependent viscosity η(k)\eta(k) is validated by comparing the results of η(k)\eta(k) from the two simulations. It is also verified that the Green-Kubo relation can still yield an accurate measure of the static viscosity η\eta in the presence of a modest level of friction as in dusty plasma experiments.Comment: 6 pages, 3 figures, Physics of Plasmas invited pape

    Statistical mechanics of an ideal Bose gas in a confined geometry

    Full text link
    We study the behaviour of an ideal non-relativistic Bose gas in a three-dimensional space where one of the dimensions is compactified to form a circle. In this case there is no phase transition like that for the case of an infinite volume, nevertheless Bose-Einstein condensation signified by a sudden buildup of particles in the ground state can occur. We use the grand canonical ensemble to study this problem. In particular, the specific heat is evaluated numerically, as well as analytically in certain limits. We show analytically how the familiar result for the specific heat is recovered as we let the size of the circle become large so that the infinite volume limit is approached. We also examine in detail the behaviour of the chemical potential and establish the precise manner in which it approaches zero as the volume becomes large.Comment: 13 pages, 2 eps figures, revtex

    Noninteracting Fermions in infinite dimensions

    Full text link
    Usually, we study the statistical behaviours of noninteracting Fermions in finite (mainly two and three) dimensions. For a fixed number of fermions, the average energy per fermion is calculated in two and in three dimensions and it becomes equal to 50 and 60 per cent of the fermi energy respectively. However, in the higher dimensions this percentage increases as the dimensionality increases and in infinite dimensions it becomes 100 per cent. This is an intersting result, at least pedagogically. Which implies all fermions are moving with Fermi momentum. This result is not yet discussed in standard text books of quantum statistics. In this paper, this fact is discussed and explained. I hope, this article will be helpful for graduate students to study the behaviours of free fermions in generalised dimensionality.Comment: To appear in European Journal of Physics (2010

    Statistical Mechanics and Lorentz Violation

    Full text link
    The theory of statistical mechanics is studied in the presence of Lorentz-violating background fields. The analysis is performed using the Standard-Model Extension (SME) together with a Jaynesian formulation of statistical inference. Conventional laws of thermodynamics are obtained in the presence of a perturbed hamiltonian that contains the Lorentz violating terms. As an example, properties of the nonrelativistic ideal gas are calculated in detail. To lowest order in Lorentz violation, the scalar thermodynamic variables are only corrected by a rotationally invariant combination of parameters that mimics a (frame dependent) effective mass. Spin couplings can induce a temperature independent polarization in the classical gas that is not present in the conventional case. Precision measurements in the residual expectation values of the magnetic moment of Fermi gases in the limit of high temperature may provide interesting limits on these parameters.Comment: 7 pages, revte

    Single parameter quasi-particle model for QGP

    Full text link
    We discuss a new single parameter quasi-particle model and study the thermodynamics of (2+1)-flavor quark gluon plasma (QGP). Our model with a single parameter explains remarkably well the lattice simulation results of Fodor et. al. Phys. Lett. B568, 73 (2003).Comment: 9 pages, 3 figures, articl

    Brownian Motion in Robertson-Walker Space-Times from electromagnetic Vacuum Fluctuations

    Full text link
    We consider classical particles coupled to the quantized electromagnetic field in the background of a spatially flat Robertson-Walker universe. We find that these particles typically undergo Brownian motion and acquire a non-zero mean squared velocity which depends upon the scale factor of the universe. This Brownian motion can be interpreted as due to non-cancellation of anti-correlated vacuum fluctuations in the time dependent background space-time. We consider several types of coupling to the electromagnetic field, including particles with net electric charge, a magnetic dipole moment, and electric polarizability. We also investigate several different model scale factors.Comment: 29 pages, 7 figure
    • …
    corecore