7 research outputs found
Antidiabetic Potential of Marine Brown Algae—a Mini Review
Marine algae are an important source of bioactive metabolites in drug development and nutraceuticals. Diabetes mellitus is a metabolic disorder and the third leading cause of death worldwide due to lifestyle changes associated with rapid urbanization. Due to the adverse side effects of currently available antidiabetic drugs, search for an effective natural-based antidiabetic drug is important to combat diabetes and its complications. Therefore, in lieu with herbal drug development, it is important to find the potential benefits of seaweeds for the management of type 2 diabetes as they are underexplored yet in Sri Lanka. Among the marine seaweeds, natural bioactive compounds are abundant in brown algae with potentials in application as active ingredients in drug leads and nutraceuticals. Bioactive secondary metabolites are derived from numerous biosynthetic pathways of marine algae which contribute to various chemical and biological properties. Phlorotannins present in marine brown algae exhibited antidiabetic activities through different mechanisms such as the inhibitory effect of enzyme targets mainly by inhibiting the enzymes such as α-amylase, α-glucosidase, angiotensin-converting enzymes (ACE), aldose reductase, dipeptidyl peptidase-4, and protein tyrosine phosphatase 1B (PTP 1B) enzyme. In addition, phlorotannins derived from brown algae have the ability to reduce diabetic complications. Hence, the present review focuses on the different antidiabetic mechanisms of secondary bioactive compounds present in marine brown algae
Mechanistic Insight into Apoptotic Induction in Human Rhabdomyosarcoma and Breast Adenocarcinoma Cells by Chnoospora minima: A Sri Lankan Brown Seaweed
The current study determined the cytotoxic and apoptotic potential of the polyphenol-rich methanol extract of Chnoospora minima (C. minima) and its fractions against human breast adenocarcinoma (MCF-7) and rhabdomyosarcoma (RMS) cells. MTT and neutral red assays were used to determine cytotoxicity. The clonogenic assay evaluated the antineoplastic activity, while the apoptotic activity was determined by cellular morphological changes, caspase 3/7 activity, and DNA fragmentation. Morphological alterations in apoptosis were observed by an inverted phase-contrast microscope and Hoechst 33342 staining methods. The total phenolic, flavonoids, alkaloids, and antioxidant activity in the hexane and chloroform fractions were determined, based on their cytotoxic activity. The hexane fraction of C. minima effectively reduced the cell growth that is concentration-dependent in human RMS and MCF-7 cell lines. It also exhibited low cytotoxicity on Vero cells. The characteristic cellular and nuclear apoptotic morphological features were observed. A noticeable caspase 3/7 activation and the fragmented DNA were detected only in the hexane fraction treated RMS cells, whereas MCF-7 cells showed low caspase 3/7 activation due to a lack of caspase 3 and no evidence of having a typical ladder pattern of apoptosis. Further analysis revealed that the hexane fraction-treated RMS cells upregulated the p53 gene twofold (2.72) compared to the p21 (0.77) gene, whereas in the MCF-7 cells, a 2.21-fold upregulation of p53 was observed compared to the p21 (0.64) gene. The hexane fraction exhibited moderate total phenolics, flavonoids, alkaloids content, and antioxidant activity. According to the different antioxidant mechanisms, hexane and chloroform fractions showed the highest antioxidant activities by FRAP and ORAC assays, respectively. GC-MS analysis of hexane fraction revealed the presence of methyl tetradecanoate (38.314%) as the most abundant compound. The study’s findings highlighted that the non-polar compounds present in the hexane fraction of C. minima suppressed cell proliferation and induced apoptosis-mediated cell death in RMS and MCF-7 cells, mainly via the activation of the p53 gene. Hence, the isolation of compounds is warranted. However, more studies are required to understand the mechanistic insights of these observations
In Vitro Antioxidant and Antidiabetic Potentials of Syzygium caryophyllatum L. Alston
Syzygium caryophyllatum L. Alston (Family: Myrtaceae, Sinhala: Heendan) is a red-listed plant that has been used in traditional medicine in Sri Lanka for the treatment of diabetes, but it is yet to be exploited for its potential uses as a functional food or a source of supplements. The present study focused on the evaluation of antidiabetic property of S. caryophyllatum fruits and leaves assessing antioxidant, antiglycation, and antiamylase activities and functional mineral element composition. The crude extracts (CR) of leaves and fruits were fractionated into hexane (Hex) ethyl acetate (EA) and aqueous (AQ) and evaluated for bioactivities along with the crude extracts. The isolated fraction (C3) of Hex fraction of fruit showed significantly high (p<0.05) antiamylase activity with IC50 value 2.27 ± 1.81 μg/mL where the Hex fraction of fruits exhibited the IC50 value as 47.20 ± 0.3 μg/mL which was higher than acarbose (IC50: 87.96 ± 1.43 μg/mL). The EA fraction of leaves showed highest values for DPPH radical scavenging activity, ferric reducing antioxidant power, and oxygen radical absorbance capacity. Significantly high (p<0.05) ABTS radical scavenging activity and iron chelating activity were observed in Hex fraction of fruit. The composition of volatiles in leaf oil was studied with GC-MS, and 58 compounds were identified. Inductively coupled plasma-mass spectrometry data revealed the presence of biologically significant trace elements such as Fe, Zn, Mg, Cu, Se, and Sr in leaves and fruits. It is concluded that the Hex fraction of S. caryophyllatum fruits will be a good source for the formulation of supplements for diabetic management with further evaluation of potency and efficacy
Stress-induced carbon starvation in Rhizophora mucronata Lam. seedlings under conditions of prolonged submergence and water deficiency: survive or succumb
The behaviour of carbohydrate metabolism in a plant, particularly its total starch content, total soluble sugar (TSS) content and their utilisation, is of great importance in coping with abiotic stress conditions. With this in mind, we studied total starch and TSS contents, survival, growth, biomass accumulation and stomatal conductance in Rhizophora mucronata under conditions of prolonged submergence and water stress for a period of 11 months. The experiment was designed in such a way as to include three replicates per each treatment level, about 1600 young mangrove plants being subjected to study in the process. Under conditions of prolonged submergence and high levels of water stress, a small number of mangrove plants survived and they were promptly exhausted due to higher starch utilisation rates (0.75–1.05% dry mass/month). Although TSS content was increased under these intense stress conditions, it was not matched by increased seedling growth or biomass production; instead, a significant reduction in growth (i.e. ∼78%) and dry matter content was observed in stressed seedlings as compared to young plants in the respective controls. It follows that the intense increase of TSS content might be due to the direct conversion of starch to soluble sugars in order to produce metabolic energy for tolerance mechanisms like osmoregulation and root anatomical adaptations under stress conditions. This indicates that more energy is allocated for plant maintenance than for growth and biomass production under stress conditions, which might be a good acclimatory strategy to rescue young mangrove plants at the early phase. However, stomatal closure under stress conditions may have caused restricted photosynthesis. Therefore, stress–induced starch degradation may upsurge, which in turn might lead in the long-run to carbon starvation, a condition lethal to mangrove seedlings.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
Heavy metal pollution in selected upland tributaries of Sri Lanka: comprehension towards the localization of sources of pollution
This study aimed to assess the heavy metal (HM) profile of the main upland tributaries of three major rivers, the Mahaweli, the Deduru and the Gin Rivers, which are commonly used for urban water supply in Sri Lanka. The HM profiles of arsenic (As), cadmium (Cd), lead (Pb) and mercury (Hg) were investigated by ICP-MS. Land-use classification was performed to locate the main sources of pollution. Mean pH, TDS and conductivity showed significant inter-site mean differences (p, 0.001). The mean contents of the HMs, considering all rivers, were observed in the order [Hg] .[As] .[Pb] .[Cd] at the sources and [As] .[Hg] .[Pb] .[Cd] at the river mouths. Particularly, in the Mahaweli River, the mean As content was 0.08 + 0.05 μg·L-1 and showed an increasing trend from the source to the river mouth. In the Deduru River, the mean Hg content was 0.14 + 0.15 μg·L-1, and of all rivers studied, the highest content of 0.50 + 0.17 μg·L-1 was recorded. The Gin River showed significant inter-site mean differences (p, 0.05) in [Pb], [As] and [Hg]. In all rivers studied, [As] was significantly higher in water samples collected near agricultural lands and urban areas as compared with the other land-use/cover types, which was further proved by a significant positive correlation (coefficient ¼ 0.479, p ¼ 0.0325). We, therefore, emphasized that HM pollution is more likely due to anthropogenic activities in the upper catchment with less lithogenic contamination. However, national water quality management should be further strengthened and new policy enforcement is emphasized.SCOPUS: ar.jinfo:eu-repo/semantics/publishe