7 research outputs found

    Corrigendum: SARS-CoV-2 Omicron variants: burden of disease, impact on vaccine effectiveness and need for variant-adapted vaccines

    Get PDF
    A Corrigendum on "SARS-CoV-2 Omicron variants: burden of disease, impact on vaccine effectiveness and need for variant-adapted vaccines" by Pather S, Madhi SA, Cowling BJ, Moss P, Kamil JP, Ciesek S, Muik A and Türeci Ö (2023). . 14:1130539. doi: 10.3389/fimmu.2023.113053

    SARS-CoV-2 Omicron variants:burden of disease, impact on vaccine effectiveness and need for variant-adapted vaccines

    Get PDF
    The highly transmissible Omicron (B.1.1.529) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first detected in late 2021. Initial Omicron waves were primarily made up of sub-lineages BA.1 and/or BA.2, BA.4, and BA.5 subsequently became dominant in mid-2022, and several descendants of these sub-lineages have since emerged. Omicron infections have generally caused less severe disease on average than those caused by earlier variants of concern in healthy adult populations, at least, in part, due to increased population immunity. Nevertheless, healthcare systems in many countries, particularly those with low population immunity, have been overwhelmed by unprecedented surges in disease prevalence during Omicron waves. Pediatric admissions were also higher during Omicron waves compared with waves of previous variants of concern. All Omicron sub-lineages exhibit partial escape from wild-type (Wuhan-Hu 1) spike-based vaccine-elicited neutralizing antibodies, with sub-lineages with more enhanced immuno-evasive properties emerging over time. Evaluating vaccine effectiveness (VE) against Omicron sub-lineages has become challenging against a complex background of varying vaccine coverage, vaccine platforms, prior infection rates, and hybrid immunity. Original messenger RNA vaccine booster doses substantially improved VE against BA.1 or BA.2 symptomatic disease. However, protection against symptomatic disease waned, with reductions detected from 2 months after booster administration. While original vaccine-elicited CD8+ and CD4+ T-cell responses cross-recognize Omicron sub-lineages, thereby retaining protection against severe outcomes, variant-adapted vaccines are required to expand the breadth of B-cell responses and improve durability of protection. Variant-adapted vaccines were rolled out in late 2022 to increase overall protection against symptomatic and severe infections caused by Omicron sub-lineages and antigenically aligned variants with enhanced immune escape mechanisms

    The impact of evolving SARS-CoV-2 mutations and variants on COVID-19 vaccines

    Get PDF
    The emergence of several new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in recent months has raised concerns around the potential impact on ongoing vaccination programs. Data from clinical trials and real-world evidence suggest that current vaccines remain highly effective against the alpha variant (B.1.1.7), while some vaccines have reduced efficacy and effectiveness against symptomatic disease caused by the beta variant (B.1.351) and the delta variant (B.1.617.2); however, effectiveness against severe disease and hospitalization caused by delta remains high. Although data on the effectiveness of the primary regimen against omicron (B.1.1.529) are limited, booster programs using mRNA vaccines have been shown to restore protection against infection and symptomatic disease (regardless of the vaccine used for the primary regimen) and maintain high effectiveness against hospitalization. However, effectiveness against infection and symptomatic disease wanes with time after the booster dose. Studies have demonstrated reductions of varying magnitude in neutralizing activity of vaccine-elicited antibodies against a range of SARS-CoV-2 variants, with the omicron variant in particular exhibiting partial immune escape. However, evidence suggests that T-cell responses are preserved across vaccine platforms, regardless of variant of concern. Nevertheless, various mitigation strategies are under investigation to address the potential for reduced efficacy or effectiveness against current and future SARS-CoV-2 variants, including modification of vaccines for certain variants (including omicron), multivalent vaccine formulations, and different delivery mechanisms

    Clinical development of variant-adapted BNT162b2 COVID-19 vaccines: the early Omicron era

    No full text
    Introduction The Omicron BA.1 variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and subsequent sub-lineages exhibit partial escape from neutralizing antibodies elicited by vaccines containing or encoding wild-type spike protein. In response to the emergence of Omicron sub-lineages, variant-adapted vaccines that contain or encode for Omicron spike protein components have been developed. Areas covered This review presents currently available clinical immunogenicity and safety data on Omicron variant-adapted versions of the BNT162b2 messenger RNA (mRNA) vaccine and summarizes the expected mechanism of action, and rationale for development, of these vaccines. In addition, challenges encountered during development and regulatory approval are discussed. Expert opinion Omicron-adapted BNT162b2 vaccines provide a wider breadth and potentially more durable protection against Omicron sub-lineages and antigenically aligned variants when compared with the original vaccine. As SARS-CoV-2 continues to evolve, further vaccine updates may be required. To facilitate this, a globally harmonized regulatory process for the transition to updated vaccines is needed. Next-generation vaccine approaches may provide broader protection against future variants

    Benefit-risk evaluation of COVID-19 vaccination in special population groups of interest.

    No full text
    Several population groups display an increased risk of severe disease and mortality following SARS-CoV-2 infection. These include those who are immunocompromised (IC), have a cancer diagnosis, human immunodeficiency virus (HIV) infection or chronic inflammatory disease including autoimmune disease, primary immunodeficiencies, and those with kidney or liver disease. As such, improved understanding of the course of COVID-19 disease, as well as the efficacy, safety, and benefit-risk profiles of COVID-19 vaccines in these vulnerable groups is paramount in order to inform health policy makers and identify evidence-based vaccination strategies. In this review, we seek to summarize current data, including recommendations by national health authorities, on the impact and benefit-risk profiles of COVID-19 vaccination in these populations. Moving forward, although significant efforts have been made to elucidate and characterize COVID-19 disease course and vaccine responses in these groups, further larger-scale and longer-term evaluation will be instrumental to help further guide management and vaccination strategies, particularly given concerns about waning of vaccine-induced immunity and the recent surge of transmission with SARS-CoV-2 variants of concern

    COVID-19 Epidemiology, Immunity, and Vaccine Development in Children: A Review

    No full text
    Although pediatric populations experienced lower COVID-19 severity and mortality than adults, the epidemiology of this disease continues to evolve. COVID-19 clinical manifestations in pediatrics commonly include fever and cough, but may differ from adults and by variant. Serious complications, including MIS-C, rarely occur. Although early data showed a decreased likelihood of COVID-19 transmission from children versus adults, outbreaks and viral shedding studies support pediatric transmission potential. Children may mount more robust initial immune responses to SARS-CoV-2 versus adults. COVID-19 vaccines with available pediatric data include BNT162b2, mRNA-1273, CoronaVac, and BBIBP-CorV. Depending on age group and jurisdiction, BNT162b2 and mRNA-1273 have received full approval or emergency/conditional authorization in the United States and European Union from 6 months of age. Clinical trials have shown BNT162b2 and mRNA-1273 safety and high efficacy in pediatric populations, with demonstrably noninferior immune responses versus young adults. Real-world studies further support BNT162b2 safety and effectiveness against the Delta variant. mRNA vaccination benefits are considered to outweigh risks, including myocarditis; however, pediatric vaccination rates remain relatively low. Given a growing body of clinical trial and real-world data showing vaccine safety and effectiveness, pediatric vaccination should be prioritized as an important strategy to control the pandemic

    Safety and reactogenicity of the BNT162b2 COVID-19 vaccine: Development, post-marketing surveillance, and real-world data

    No full text
    ABSTRACTThe pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to urgent actions by innovators, vaccine developers, regulators, and other stakeholders to ensure public access to protective vaccines while maintaining regulatory agency standards. Although development timelines for vaccines against SARS-CoV-2 were much quicker than standard vaccine development timelines, regulatory requirements for efficacy and safety evaluations, including the volume and quality of data collected, were upheld. Rolling review processes supported by sponsors and regulatory authorities enabled rapid assessment of clinical data as well as emergency use authorization. Post-authorization and pharmacovigilance activities enabled the quantity and breadth of post-marketing safety information to quickly exceed that generated from clinical trials. This paper reviews safety and reactogenicity data for the BNT162 vaccine candidates, including BNT162b2 (Comirnaty, Pfizer/BioNTech COVID-19 vaccine) and bivalent variant-adapted BNT162b2 vaccines, from preclinical studies, clinical trials, post-marketing surveillance, and real-world studies, including an unprecedentedly large body of independent evidence
    corecore