745 research outputs found
Low-Temperature Photoluminescence Spectroscopy of Solvent-Free PCBM Single-Crystals
PCBM ([6,6]-phenyl-C61-butyric acid methyl ester) is a highly soluble C60 derivative that is extensively used in organic solar cells, enabling power conversion efficiencies above 10%. Here we report, for the first time to the best of our knowledge, the photoluminescence of high-quality solvent-free PCBM crystals between room temperature and 4 K. Interestingly, the PL spectra of these crystals become increasingly structured as the temperature is lowered, with extremely well-resolved emission lines (and a minimum line width of ∼1.3 meV at 1.73 eV). We are able to account for such a structured emission by means of a vibronic coupling model including Franck–Condon, Jahn–Teller and Herzberg–Teller effects. Although optical transitions are not formally forbidden from the low-lying excited states of PCBM, the high symmetry of the electronically active fullerene core limits the intensity of the 0–0 transition, such that Herzberg–Teller transitions which borrow intensity from higher-lying states represent a large part of the observed spectrum. Our simulations suggest that the emissive state of PCBM can be considered as a mixture of the T1g and Hg excited states of C60 and hence that the Hg state plays a larger role in the relaxed excited state of PCBM than in that of C60
Performance evaluation of Border irrigation method for cotton field
Performance evaluation of Border irrigation method was carried out for cotton field in village Kirarkot, Sirsa (Haryana). Water application, storage and distribution efficiency were estimated using measurements of soil moisture (%), infiltration rate (cm/hr), water advance and recession time (minute) during different irrigation events. The advance time increased during the growing season due to increased infiltration rate and increased resistance to flow by the growing crops. The water application efficiency of cotton field was 100 per cent as average applied depth (8.26 cm for canal irrigation and 9.06 cm for tubewell irrigation) of irrigation was less than the average required depth (10.30 cm for canal irrigation and 10.98 cm for tubewell irrigation) throughout the field plots. The observed water storage efficiency in different cotton fields varied from 72.92 - 90.08 per cent indicating under irrigation. Water distribution efficiency of cotton fields (97.8 -99.2per cent) indicated a relatively high degree of uniformity of water application. Stratified soil profile (sandy loam: 0-30 cm and sandy clay loam: 30-120 cm) of the selected fields reduced the infiltration rate to relatively very low value after 10-15 minutes creating favourable condition for uniformity of water application under border irrigation
A Preliminary Analysis of Anthropogenic and Natural Impacts on a Volcanic Lake Ecosystem in Southern Italy by UAV-Based Monitoring
Lakes play an important role in providing various ecosystem services. However, stressors such as climate change, land use, or land-cover change threaten the ecological functions of lakes. National and international legislations address these threats and establish consistent, long-term monitoring schemes. Remote sensing techniques based on the use of Unmanned Aerial Vehicles (UAV) have recently been demonstrated to provide accurate and low-cost spatio-temporal views for the assessment of the ecological status of aquatic ecosystems and the identification of areas at risk of contamination. Few studies have been carried out so far on the employment of these tools in the monitoring of lakes. Therefore, high-resolution UAV surveys were used to analyse and evaluate natural and anthropogenic impacts on the habitat status of a volcanic lake in a protected area. Five UAV flights took place during a year-long cycle (November 2020 to November 2021) in a volcanic lake located in southern Italy. For each flight performance, an orthomosaic of georeferenced RGB images was obtained, and the different features of interest were monitored and quantified using automated processing in a GIS environment. The UAV images made it possible not only to estimate the flooded shores but also to detect the impact of human-made structures and infrastructures on the lagoon environment. It has been possible to observe how the rapid changes in lake-water level have led to the submersion of about 90.000 m(2) of terrain in winter, causing the fragmentation and degradation of habitats, while the connectivity of the natural ecosystem has been threatened by the presence of the road around the lake. The proposed methodology is rather simple and easily replicable by decision makers and local administrators and can be useful for choosing the best restoration interventions
Generation of primary photons through inverse Compton scattering using a Monte Carlo simulation code
Photon sources based on inverse Compton scattering, namely, the interaction between relativistic electrons and laser photons, are emerging as quasimonochromatic energy-tunable sources either as compact alternatives to synchrotron facilities for the production of low-energy (10–100 keV) x rays or to reach the 1–100 MeV photon energy range, which is inaccessible at synchrotrons. Different interaction layouts are possible for electron and laser beams, and several applications are being studied, ranging from fundamental research in nuclear physics to advanced x-ray imaging in the biomedical field, depending on the radiation energy range, intensity, and bandwidth. Regardless of the specific application, a reliable tool for the simulation of the radiation produced is essential for the design, the commissioning, and, subsequently, the study and optimization of this kind of source. Different computational tools have been developed for this task, based on both a purely analytical treatment and Monte Carlo simulation codes. Each of these tools has strengths and weaknesses. Here, we present a novel Monte Carlo code based on GEANT4 for the simulation of inverse Compton scattering in the linear regime. The code produces results in agreement with CAIN, one of the most used Monte Carlo tools, for a wide range of interaction conditions at a computational time reduced by 2 orders of magnitude. Furthermore, the developed tool can be easily embedded in a GEANT4 user application for the tracking of photons generated through inverse Compton scattering in a given experimental setup
Electro-responsivity in electrolyte-free and solution processed Bragg stacks
Achieving an active manipulation of colours has huge implications in optoelectronics, as colour engineering can be exploited in a number of applications, ranging from display to lightning. In the last decade, the synergy of the highly pure colours of 1D photonic crystals, also known as Bragg stacks, with electro-tunable materials have been proposed as an interesting route to attain such a technologically relevant effect. However, recent works rely on the use of liquid electrolytes, which can pose issues in terms of chemical and environmental stability. Here, we report on the proof-of-concept of an electrolyte free and solution-processed electro-responsive Bragg stack. We integrate an electro-responsive plasmonic metal oxide, namely indium tin oxide, in a 1D photonic crystal structure made of alternating layers of ITO and TiO2 nanoparticles. In such a device, we observed a maximum of 23 nm blue-shift upon the application of an external bias (10 V). Our data suggest that electrochromism can be attained in all-solid state systems by combining a judicious selection of the constituent materials with device architecture optimisation. This journal i
Endurance training damages small airway epithelium in mice.
RATIONALE: In athletes, airway inflammatory cells were found to be increased in
induced sputum or bronchial biopsies. Most data were obtained after exposure to
cold and dry air at rest or during exercise. Whether training affects epithelial
and inflammatory cells in small airways is unknown.
OBJECTIVES: To test whether endurance training under standard environmental
conditions causes epithelial damage and inflammation in the small airways of
mice.
METHODS AND MEASUREMENTS: Formalin-fixed, paraffin-embedded lung sections were
obtained in sedentary (n = 14) and endurance-trained (n = 16) Swiss mice at
baseline and after 15, 30, and 45 days of training. The following variables were
assessed (morphometry and immunohistochemistry) in small airways (basement
membrane length < 1 mm): (1) integrity, proliferation, and apoptosis of
bronchiolar epithelium; and (2) infiltration, activation, and apoptosis of
inflammatory cells.
MAIN RESULTS: Compared with sedentary mice, bronchiolar epithelium of trained
mice showed progressive loss of ciliated cells, slightly increased thickness,
unchanged goblet cell number and appearance, and increased apoptosis and
proliferation (proliferating cell nuclear antigen) (p < 0.001 for all variables).
Leukocytes (CD45(+) cells) infiltrated airway walls (p < 0.0001) and accumulated
within the lumen (p < 0.001); however, apoptosis of CD45(+) cells did not differ
between trained and sedentary mice. Nuclear factor-kappaB translocation and
inhibitor-alpha of NF-kappaB (IkappaBalpha) phosphorylation were not increased in
trained compared with sedentary mice.
CONCLUSIONS: Bronchiolar epithelium showed damage and repair associated with
endurance training. Training increased inflammatory cells in small airways, but
inflammatory activation was not increased. These changes may represent an
adaptive response to increased ventilation during exercise
Internal rotation of the red-giant star KIC 4448777 by means of asteroseismic inversion
In this paper we study the dynamics of the stellar interior of the early
red-giant star KIC 4448777 by asteroseismic inversion of 14 splittings of the
dipole mixed modes obtained from {\it Kepler} observations. In order to
overcome the complexity of the oscillation pattern typical of red-giant stars,
we present a procedure which involves a combination of different methods to
extract the rotational splittings from the power spectrum. We find not only
that the core rotates faster than the surface, confirming previous inversion
results generated for other red giants (Deheuvels et al. 2012,2014), but we
also estimate the variation of the angular velocity within the helium core with
a spatial resolution of and verify the hypothesis of a sharp
discontinuity in the inner stellar rotation (Deheuvels et al. 2014). The
results show that the entire core rotates rigidly with an angular velocity of
about ~nHz and provide evidence for an
angular velocity decrease through a region between the helium core and part of
the hydrogen burning shell; however we do not succeed to characterize the
rotational slope, due to the intrinsic limits of the applied techniques. The
angular velocity, from the edge of the core and through the hydrogen burning
shell, appears to decrease with increasing distance from the center, reaching
an average value in the convective envelope of
~nHz. Hence, the core in KIC~4448777 is
rotating from a minimum of 8 to a maximum of 17 times faster than the envelope.
We conclude that a set of data which includes only dipolar modes is sufficient
to infer quite accurately the rotation of a red giant not only in the dense
core but also, with a lower level of confidence, in part of the radiative
region and in the convective envelope.Comment: accepted for publication on Ap
Tamm Plasmon Resonance as Optical Fingerprint of Silver/Bacteria Interaction
The incorporation of responsive elements into photonic crystals is an effective strategy for fabricating active optical components to be used as sensors, actuators, and modulators. In particular, the combination of simple multilayered dielectric mirrors with optically responsive plasmonic materials has proven to be successful. Recently, Tamm plasmon (TP) modes have emerged as powerful tools for these purposes. These modes arise at the interface between a distributed Bragg reflector (DBR) and a plasmonic layer and can be excited at a normal incidence angle. Although the TP field is located usually at the DBR/metal interface, recent studies have demonstrated that nanoscale corrugation of the metal layer permits access to the TP mode from outside, thus opening exciting perspectives for many real-life applications. In this study, we show that the TP resonance obtained by capping a DBR with a nanostructured layer of silver is responsive to Escherichia coli. Our data indicate that the modification of the TP mode originates from the well-known capability of silver to interact with bacteria, within a process in which the release of Ag+ ions leaves an excess of negative charge in the metal lattice. Finally, we exploited this effect to devise a case study in which we optically differentiated between the presence of proliferative and nonproliferative bacteria using the TP resonance as a read-out. These findings make these devices promising all-optical probes for bacterial metabolic activity, including their response to external stressors
Hexa-peri-benzocoronene with two extra K-regions in an ortho-configuration
There are three possible isomers for hexa-peri-hexabenzocoronene (HBC) with two extra K-regions, but only two of them have been reported, namely with the meta- and para-configurations. Herein, we describe the synthesis of HBC 4 with two extra K-regions in the ortho-configuration, forming a longer zigzag edge compared with the other two isomers. The structure of 4 was validated by laser desorption/ionization time-of-flight mass analysis and nuclear magnetic resonance spectra, as well as Raman and infrared spectroscopies supported by density functional theory calculations. The optical properties of 4 were investigated by UV/vis absorption and ultrafast transient absorption spectroscopy. Together with the analysis of aromaticity, the influence of the zigzag edge on the π-conjugation pathway and HOMO-LUMO gaps of the three isomers were investigated
- …