3 research outputs found

    BriXs ultra high fluxinverse compton source based on modified push-pull energy recovery linacs

    Get PDF
    We present a conceptual design for a compact X-ray Source BriXS (Bright and compact X-ray Source). BriXS, the first stage of the Marix project, is an Inverse Compton Source (ICS) of X-ray based on superconducting cavities technology for the electron beam with energy recirculation and on a laser system in Fabry-Pérot cavity at a repetition rate of 100 MHz, producing 20–180 keV monochromatic X-Rays devoted mainly to medical applications. An energy recovery scheme based on a modified folded push-pull CW-SC twin Energy Recovery Linac (ERL) ensemble allows us to sustain an MW-class beam power with almost one hundred kW active power dissipation/consumption

    BriXs Ultra High Flux Inverse Compton Source Based on Modified Push-Pull Energy Recovery Linacs

    Get PDF
    We present a conceptual design for a compact X-ray Source BriXS (Bright and compact X-ray Source). BriXS, the first stage of the Marix project, is an Inverse Compton Source (ICS) of X-ray based on superconducting cavities technology for the electron beam with energy recirculation and on a laser system in Fabry-Pérot cavity at a repetition rate of 100 MHz, producing 20–180 keV monochromatic X-Rays devoted mainly to medical applications. An energy recovery scheme based on a modified folded push-pull CW-SC twin Energy Recovery Linac (ERL) ensemble allows us to sustain an MW-class beam power with almost one hundred kW active power dissipation/consumption

    Status of compact inverse Compton sources in Italy: BriXS and STAR

    No full text
    There is a strong demand for small foot-print high-flux hard X-rays machines in order to enable a large variety of science activities and serve a multidisciplinary user community. For this purpose, two compact Inverse Compton Sources (ICSs) are currently being developed in Italy. The most recent one is the Bright and Compact X-ray Source (BriXS) which has recently been proposed to produce very energetic X-rays (up to 180 keV) and high photon flux (up to 1013 photons/s with expected bandwidth of 1-10%). BriXS will be installed in Milan and it will enable advanced large area radiological imaging applications to be conducted with mono-chromatic X-rays, as well as allowing basic fundamental science of matter and health sciences at both pre- and clinical levels. Based on an energy-recovery linac (ERL) scheme and superconducting technology, BriXS will operate in CW regime with an unprecedented electron beam repetition rate of 100 MHz. The second Italian ICS light source is the Southern Europe Thomson back-scattering source for Applied Research (STAR) which is currently installed at the University of Calabria (UniCal). STAR is a compact machine that has been designed to produce monochromatic and tunable, ps-long, polarized X-ray beams in the range 40-140 keV with a photon flux up to 1010 photons/s and energy bandwidth below 10%. The electron beam injector is based on normal-conducting technology in S-Band with a repetition rate up to 100 Hz
    corecore