5,643 research outputs found
Potential for Solar System Science with the ngVLA
Radio wavelength observations of solar system bodies are a powerful method of
probing many characteristics of those bodies. From surface and subsurface, to
atmospheres (including deep atmospheres of the giant planets), to rings, to the
magnetosphere of Jupiter, these observations provide unique information on
current state, and sometimes history, of the bodies. The ngVLA will enable the
highest sensitivity and resolution observations of this kind, with the
potential to revolutionize our understanding of some of these bodies. In this
article, we present a review of state-of-the-art radio wavelength observations
of a variety of bodies in our solar system, varying in size from ring particles
and small near-Earth asteroids to the giant planets. Throughout the review we
mention improvements for each body (or class of bodies) to be expected with the
ngVLA. A simulation of a Neptune-sized object is presented in Section 6.
Section 7 provides a brief summary for each type of object, together with the
type of measurements needed for all objects throughout the Solar System
Simultaneous Observations of Comet C/2002 T7 (LINEAR) with the Berkeley-Illinois-Maryland Association and Owens Valley Radio Observatory Interferometers: HCN and CH_3OH
We present observations of HCN J = 1-0 and CH_3OH J(K_a, K_c) = 3(1, 3)-4(0, 4) A+ emission from comet C/2002 T7 (LINEAR) obtained simultaneously with the Owens Valley Radio Observatory (OVRO) and Berkeley-Illinois-Maryland Association (BIMA) millimeter interferometers. We combined the data from both arrays to increase the (u, v) sampling and signal to noise of the detected line emission. We also report the detection of CH_3OH J(K_a, K_c) = 8(0, 8)-7(1, 7) A^+ with OVRO data alone. Using a molecular excitation code that includes the effects of collisions with water and electrons, as well as pumping by the Solar infrared photons (for HCN alone), we find a production rate of HCN of 2.9 × 10^(26) s^(–1) and for CH_3OH of 2.2 × 10^(27) s^(–1). Compared to the adopted water production rate of 3 × 10^(29) s^(–1), this corresponds to an HCN/H_2O ratio of 0.1% and a CH_3OH/H_2O ratio of 0.7%. We critically assess the uncertainty of these values due to the noise (~10%), the uncertainties in the adopted comet model (~50%), and the uncertainties in the adopted collisional excitation rates (up to a factor of 2). Pumping by Solar infrared photons is found to be a minor effect for HCN, because our 15" synthesized beam is dominated by the region in the coma where collisions dominate. Since the uncertainties in the derived production rates are at least as large as one-third of the differences found between comets, we conclude that reliable collision rates and an accurate comet model are essential. Because the collisionally dominated region critically depends on the water production rate, using the same approximate method for different comets may introduce biases in the derived production rates. Multiline observations that directly constrain the molecular excitation provide much more reliable production rates
Superdiffusion of massive particles induced by multi-scale velocity fields
We study drag-induced diffusion of massive particles in scale-free velocity
fields, where superdiffusive behavior emerges due to the scale-free size
distribution of the vortices of the underlying velocity field. The results show
qualitative resemblance to what is observed in fluid systems, namely the
diffusive exponent for the mean square separation of pairs of particles and the
preferential concentration of the particles, both as a function of the response
time.Comment: 5 pages, 5 figures. Accepted for publication in EP
Confirmation and Analysis of Circular Polarization from Sagittarius A*
Recently Bower et al. (1999b) have reported the detection of circular
polarization from the Galactic Center black hole candidate, Sagittarius A*. We
provide an independent confirmation of this detection, and provide some
analysis on the possible mechanisms.Comment: 14 pages, to appear in Astrophysical Journal Letter
The Distribution, Excitation and Formation of Cometary Molecules: Methanol, Methyl Cyanide and Ethylene Glycol
We present an interferometric and single dish study of small organic species
toward Comets C/1995 O1 (Hale-Bopp) and C/2002 T7 (LINEAR) using the BIMA
interferometer at 3 mm and the ARO 12m telescope at 2 mm. For Comet Hale-Bopp,
both the single-dish and interferometer observations of CH3OH indicate an
excitation temperature of 105+/-5 K and an average production rate ratio
Q(CH3OH)/Q(H2O)~1.3% at ~1 AU. Additionally, the aperture synthesis
observations of CH3OH suggest a distribution well described by a spherical
outflow and no evidence of significant extended emission. Single-dish
observations of CH3CN in Comet Hale-Bopp indicate an excitation temperature of
200+/-10 K and a production rate ratio of Q(CH3CN)/Q(H2O)~0.017% at ~1 AU. The
non-detection of a previously claimed transition of cometary (CH2OH)2 toward
Comet Hale-Bopp with the 12m telescope indicates a compact distribution of
emission, D<9'' (<8500 km). For the single-dish observations of Comet T7
LINEAR, we find an excitation temperature of CH3OH of 35+/-5 K and a CH3OH
production rate ratio of Q(CH3OH)/Q(H2O)~1.5% at ~0.3 AU. Our data support
current chemical models that CH3OH, CH3CN and (CH2OH)2 are parent nuclear
species distributed into the coma via direct sublimation off cometary ices from
the nucleus with no evidence of significant production in the outer coma.Comment: accepted for publication in Ap
The Taiwanese-American Occultation Survey: The Multi-Telescope Robotic Observatory
The Taiwanese-American Occultation Survey (TAOS) operates four fully
automatic telescopes to search for occultations of stars by Kuiper Belt
Objects. It is a versatile facility that is also useful for the study of
initial optical GRB afterglows. This paper provides a detailed description of
the TAOS multi-telescope system, control software, and high-speed imaging.Comment: 11 pages, 11 figure
- …
