1,689 research outputs found
Recommended from our members
On the assimilation of Martian total ozone retrievals
The technique of data assimilation gives us an opportunity to further our understanding of important photochemical processes in the Martian atmosphere, through the creation of a reanalysis product that can be used to investigate the temporal and spatial agreement between model and observations and determine any possible causes of identified differences. In this study [1], we have assimilated, for the first time, total ozone retrievals into a Mars Global Circulation model (GCM) to study the ozone cycle
Signatures of Inelastic Scattering in Coulomb-Blockade Quantum Dots
We calculate the finite-temperature conductance peak-height distributions in
Coublomb-blockade quantum dots in the limit where the inelastic scattering rate
in the dot is large compared with the mean elastic tunneling rate. The relative
reduction of the standard deviation of the peak-height distribution by a
time-reversal symmetry-breaking magnetic field, which is essentially
temperature-independent in the elastic limit, is enhanced by the inclusion of
inelastic scattering at finite temperature. We suggest this quantity as an
independent experimental probe for inelastic scattering in closed dots.Comment: 4 pages, 3 eps figures, revtex
Statistics of Coulomb blockade peak spacings for a partially open dot
We show that randomness of the electron wave functions in a quantum dot
contributes to the fluctuations of the positions of the conductance peaks. This
contribution grows with the conductance of the junctions connecting the dot to
the leads. It becomes comparable with the fluctuations coming from the
randomness of the single particle spectrum in the dot while the Coulomb
blockade peaks are still well-defined. In addition, the fluctuations of the
peak spacings are correlated with the fluctuations of the conductance peak
heights.Comment: 13 pages, 1 figur
Finite temperature effects in Coulomb blockade quantum dots and signatures of spectral scrambling
The conductance in Coulomb blockade quantum dots exhibits sharp peaks whose
spacings fluctuate with the number of electrons. We derive the
temperature-dependence of these fluctuations in the statistical regime and
compare with recent experimental results. The scrambling due to Coulomb
interactions of the single-particle spectrum with the addition of an electron
to the dot is shown to affect the temperature-dependence of the peak spacing
fluctuations. Spectral scrambling also leads to saturation in the temperature
dependence of the peak-to-peak correlator, in agreement with recent
experimental results. The signatures of scrambling are derived using discrete
Gaussian processes, which generalize the Gaussian ensembles of random matrices
to systems that depend on a discrete parameter -- in this case, the number of
electrons in the dot.Comment: 14 pages, 4 eps figures included, RevTe
Spectral fluctuations effects on conductance peak height statistics in quantum dots
Within random matrix theory for quantum dots, both the dot's one-particle
eigenlevels and the dot-lead couplings are statistically distributed. While the
effect of the latter on the conductance is obvious and has been taken into
account in the literature, the statistical distribution of the one-particle
eigenlevels is generally replaced by a picket-fence spectrum. Here we take the
random matrix theory eigenlevel distribution explicitly into account and
observe significant deviations in the conductance distribution and
magnetoconductance of closed quantum dots at experimentally relevant
temperatures.Comment: 3 pages, 2 figure
Spin and interaction effects in quantum dots: a Hartree-Fock-Koopmans approach
We use a Hartree-Fock-Koopmans approach to study spin and interaction effects
in a diffusive or chaotic quantum dot. In particular, we derive the statistics
of the spacings between successive Coulomb-blockade peaks. We include
fluctuations of the matrix elements of the two-body screened interaction,
surface-charge potential, and confining potential to leading order in the
inverse Thouless conductance. The calculated peak-spacing distribution is
compared with experimental results.Comment: 5 pages, 4 eps figures, revise
Density functional theory of spin-polarized disordered quantum dots
Using density functional theory, we investigate fluctuations of the ground
state energy of spin-polarized, disordered quantum dots in the metallic regime.
To compare to experiment, we evaluate the distribution of addition energies and
find a convolution of the Wigner-Dyson distribution, expected for noniteracting
electrons, with a narrower Gaussian distribution due to interactions. The tird
moment of the total distribution is independent of interactions, and so is
predicted to decrease by a factor of 0.405 upon application of a magnetic field
which transforms from the Gaussian orthogonal to the Gaussian unitary ensemble.Comment: 13 pages, 2 figure
Linear conductance in Coulomb-blockade quantum dots in the presence of interactions and spin
We discuss the calculation of the linear conductance through a
Coulomb-blockade quantum dot in the presence of interactions beyond the
charging energy. In the limit where the temperature is large compared with a
typical tunneling width, we use a rate-equations approach to describe the
transitions between the corresponding many-body states. We discuss both the
elastic and rapid-thermalization limits, where the rate of inelastic scattering
in the dot is either small or large compared with the elastic transition rate,
respectively. In the elastic limit, we find several cases where a closed
solution for the conductance is possible, including the case of a constant
exchange interaction. In the rapid-thermalization limit, a closed solution is
possible in the general case. We show that the corresponding expressions for
the linear conductance simplify for a Hamiltonian that is invariant under spin
rotations.Comment: 11 pages, no figures, revtex
Ground-state energy and spin in disordered quantum dots
We investigate the ground-state energy and spin of disordered quantum dots
using spin-density-functional theory. Fluctuations of addition energies
(Coulomb-blockade peak spacings) do not scale with average addition energy but
remain proportional to level spacing. With increasing interaction strength, the
even-odd alternation of addition energies disappears, and the probability of
non-minimal spin increases, but never exceeds 50%. Within a two-orbital model,
we show that the off-diagonal Coulomb matrix elements help stabilize a ground
state of minimal spin.Comment: 10 pages, 2 figure
Designing surgical clothing and drapes according to the new technical standards
Hospitals will continue to be the largest consumers of disposables, because of the diverse range of procedures they provide. Favourable growth is forecast for nonwovens. Increasing concern over contamination and nosocomial infections will boost the demand for consumables and disposables surgical gowns and drapes. But, until now neither the manufacturers nor the end users of surgical gowns and drapes could agree on standards.
So, a mandatory European standard is being developed to establish basic requirements and test methods for disposable and reusable materials used for surgical gowns and drapes. Once this standard has been adopted, the continued use of cotton textiles and conventional cotton-polyester mixed textiles will become questionable.(undefined
- …
