38 research outputs found

    A micro-convection model for thermal conductivity of nanofluids

    Get PDF
    Increase in the specific surface area as well as Brownian motion are supposed to be the most significant reasons for the anomalous enhancement in thermal conductivity of nanofluids. This work presents a semi-empirical approach for the same by emphasizing the above two effects through micro-convection. A new way of modeling thermal conductivity of nanofluids has been explored which is found to agree excellently with a wide range of experimental data obtained by the present authors as well as the data published in literature

    The development and validation of a scoring tool to predict the operative duration of elective laparoscopic cholecystectomy

    Get PDF
    Background: The ability to accurately predict operative duration has the potential to optimise theatre efficiency and utilisation, thus reducing costs and increasing staff and patient satisfaction. With laparoscopic cholecystectomy being one of the most commonly performed procedures worldwide, a tool to predict operative duration could be extremely beneficial to healthcare organisations. Methods: Data collected from the CholeS study on patients undergoing cholecystectomy in UK and Irish hospitals between 04/2014 and 05/2014 were used to study operative duration. A multivariable binary logistic regression model was produced in order to identify significant independent predictors of long (> 90 min) operations. The resulting model was converted to a risk score, which was subsequently validated on second cohort of patients using ROC curves. Results: After exclusions, data were available for 7227 patients in the derivation (CholeS) cohort. The median operative duration was 60 min (interquartile range 45–85), with 17.7% of operations lasting longer than 90 min. Ten factors were found to be significant independent predictors of operative durations > 90 min, including ASA, age, previous surgical admissions, BMI, gallbladder wall thickness and CBD diameter. A risk score was then produced from these factors, and applied to a cohort of 2405 patients from a tertiary centre for external validation. This returned an area under the ROC curve of 0.708 (SE = 0.013, p  90 min increasing more than eightfold from 5.1 to 41.8% in the extremes of the score. Conclusion: The scoring tool produced in this study was found to be significantly predictive of long operative durations on validation in an external cohort. As such, the tool may have the potential to enable organisations to better organise theatre lists and deliver greater efficiencies in care

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Provider Attitudes and Practice Patterns for Direct-Acting Antiviral Therapy for Patients with Hepatocellular Carcinoma

    Full text link
    BACKGROUND & AIMS: Direct-acting antivirals (DAAs) are effective against hepatitis C virus and sustained virologic response is associated with reduced incidence of hepatocellular carcinoma (HCC). However, there is controversy over the use of DAAs in patients with active or treated HCC and uncertainty about optimal management of these patients. We aimed to characterize attitudes and practice patterns of hepatology practitioners in the United States regarding the use of DAAs in patients with HCC. METHODS: We conducted a survey of hepatology providers at 47 tertiary care centers in 25 states. Surveys were sent to 476 providers and we received 279 responses (58.6%). RESULTS: Provider beliefs about risk of HCC recurrence after DAA therapy varied: 48% responded that DAAs reduce risk, 36% responded that DAAs do not change risk, and 16% responded that DAAs increase risk of HCC recurrence. However, most providers believed DAAs to be beneficial to and reduce mortality of patients with complete responses to HCC treatment. Accordingly, nearly all providers (94.9%) reported recommending DAA therapy to patients with early-stage HCC who received curative treatment. However, fewer providers recommended DAA therapy for patients with intermediate (72.9%) or advanced (57.5%) HCC undergoing palliative therapies. Timing of DAA initiation varied among providers based on HCC treatment modality: 49.1% of providers reported they would initiate DAA therapy within 3 months of surgical resection whereas 45.9% and 5.0% would delay DAA initiation for 3-12 months and \u3e1 year post-surgery, respectively. For patients undergoing transarterial chemoembolization (TACE), 42.0% of providers would provide DAAs within 3 months of the procedure, 46.7% would delay DAAs until 3-12 months afterward, and 11.3% would delay DAAs more than 1 year after TACE. CONCLUSION: Based on a survey sent to hepatology providers, there is variation in provider attitudes and practice patterns regarding use and timing of DAAs for patients with HCC. Further studies are needed to characterize the risks and benefits of DAA therapy in this patient population

    A benchmark study on the thermal conductivity of nanofluids

    Get PDF
    This article reports on the International Nanofluid Property Benchmark Exercise, or INPBE, in which the thermal conductivity of identical samples of colloidally stable dispersions of nanoparticles or “nanofluids,” was measured by over 30 organizations worldwide, using a variety of experimental approaches, including the transient hot wire method, steady-state methods, and optical methods. The nanofluids tested in the exercise were comprised of aqueous and nonaqueous basefluids, metal and metal oxide particles, near-spherical and elongated particles, at low and high particle concentrations. The data analysis reveals that the data from most organizations lie within a relatively narrow band (±10% or less) about the sample average with only few outliers. The thermal conductivity of the nanofluids was found to increase with particle concentration and aspect ratio, as expected from classical theory. There are (small) systematic differences in the absolute values of the nanofluid thermal conductivity among the various experimental approaches; however, such differences tend to disappear when the data are normalized to the measured thermal conductivity of the basefluid. The effective medium theory developed for dispersed particles by Maxwell in 1881 and recently generalized by Nan et al. [J. Appl. Phys. 81, 6692 (1997)] , was found to be in good agreement with the experimental data, suggesting that no anomalous enhancement of thermal conductivity was achieved in the nanofluids tested in this exercise
    corecore