41,793 research outputs found
The âbroken escalatorâ phenomenon: Vestibular dizziness interferes with locomotor adaptation
BACKGROUND: Although vestibular lesions degrade postural control we do not know the relative contributions of the magnitude of the vestibular loss and subjective vestibular symptoms to locomotor adaptation. OBJECTIVE: To study how dizzy symptoms interfere with adaptive locomotor learning. METHODS: We examined patients with contrasting peripheral vestibular deficits, vestibular neuritis in the chronic stable phase (nâ=â20) and strongly symptomatic unilateral Meniereâs disease (nâ=â15), compared to age-matched healthy controls (nâ=â15). We measured locomotor adaptive learning using the âbroken escalatorâ aftereffect, simulated on a motorised moving sled. RESULTS: Patients with Meniereâs disease had an enhanced âbroken escalatorâ postural aftereffect. More generally, the size of the locomotor aftereffect was related to how symptomatic patients were across both groups. Contrastingly, the degree of peripheral vestibular loss was not correlated with symptom load or locomotor aftereffect size. During the MOVING trials, both patient groups had larger levels of instability (trunk sway) and reduced adaptation than normal controls. CONCLUSION: Dizziness symptoms influence locomotor adaptation and its subsequent expression through motor aftereffects. Given that the unsteadiness experienced during the âbroken escalatorâ paradigm is internally driven, the enhanced aftereffect found represents a new type of self-generated postural challenge for vestibular/unsteady patients
Morphology of the recently re-classified Tasman masked booby (Sula dactylatra tasmani) breeding on the Kermadec Islands
Once thought to be extinct, the Tasman Booby Sula tasmani has recently been re-classified as a subspecies of the Masked Booby S. dactylatra on the basis of genetic data. This re-classification raises the issue of whether this novel clade has a distinct morphology. Morphological differences in size, as well as coloration of integuments, bill and iris have been found in other subspecies of the Masked Booby but have not yet been reported for live Kermadec Islands breeding individuals. Museum specimens from this breeding location have been separated from other Pacific breeding subspecies by their longer wings. We sampled a total of 21 individuals from North Meyer Islet, Kermadec Group, New
Zealand, and applied molecular sexing to obtain sex-specific morphometric measurements. We matched dimorphism in vocalization with genetic sexing results and photographic documentation of human-assessed bill, foot and eye coloration. While culmen measurements were consistent with reports from museum specimens, wing chords from living specimens of Tasman Masked Boobies were 3% and 4% larger in males and females, respectively. Females had larger culmens and wings than males, consistent with the low extent of sexual dimorphism reported from museum skins. Adult Tasman Masked Boobies had yellow to buff-yellow feet, while fledglings, as in most sulids, had grey
to greyish-yellow feet. Our findings confirm the distinctively long wing and particular iris coloration previously reported for the taxon and provide the first description of integument coloration of live specimens. This study highlights the importance of including in situ assessment in taxon descriptions
Singularity Free Inhomogeneous Models with Heat Flow
We present a class of singularity free exact cosmological solutions of
Einstein's equations describing a perfect fluid with heat flow. It is obtained
as generalization of the Senovilla class [1] corresponding to incoherent
radiation field. The spacetime is cylindrically symmetric and globally regular.Comment: 6 pages, TeX, to appear in Class.Quant.Gra
Algorithms to automatically quantify the geometric similarity of anatomical surfaces
We describe new approaches for distances between pairs of 2-dimensional
surfaces (embedded in 3-dimensional space) that use local structures and global
information contained in inter-structure geometric relationships. We present
algorithms to automatically determine these distances as well as geometric
correspondences. This is motivated by the aspiration of students of natural
science to understand the continuity of form that unites the diversity of life.
At present, scientists using physical traits to study evolutionary
relationships among living and extinct animals analyze data extracted from
carefully defined anatomical correspondence points (landmarks). Identifying and
recording these landmarks is time consuming and can be done accurately only by
trained morphologists. This renders these studies inaccessible to
non-morphologists, and causes phenomics to lag behind genomics in elucidating
evolutionary patterns. Unlike other algorithms presented for morphological
correspondences our approach does not require any preliminary marking of
special features or landmarks by the user. It also differs from other seminal
work in computational geometry in that our algorithms are polynomial in nature
and thus faster, making pairwise comparisons feasible for significantly larger
numbers of digitized surfaces. We illustrate our approach using three datasets
representing teeth and different bones of primates and humans, and show that it
leads to highly accurate results.Comment: Changes with respect to v1, v2: an Erratum was added, correcting the
references for one of the three datasets. Note that the datasets and code for
this paper can be obtained from the Data Conservancy (see Download column on
v1, v2
Differing calcification processes in cultured vascular smooth muscle cells and osteoblasts
© 2019 Published by Elsevier Inc.Arterial medial calcification (AMC) is the deposition of calcium phosphate mineral, often as hydroxyapatite, inthe medial layer of the arteries. AMC shares some similarities to skeletal mineralisation and has been associatedwith the transdifferentiation of vascular smooth muscle cells (VSMCs) towards an osteoblast-like phenotype. Thisstudy used primary mouse VSMCs and calvarial osteoblasts to directly compare the established and widely usedin vitromodels of AMC and bone formation. Significant differences were identified between osteoblasts andcalcifying VSMCs. First, osteoblasts formed large mineralised bone nodules that were associated with widespreaddeposition of an extracellular collagenous matrix. In contrast, VSMCs formed small discrete regions of calcifi-cation that were not associated with collagen deposition and did not resemble bone. Second, calcifying VSMCsdisplayed a progressive reduction in cell viability over time (â€7-fold), with a 50% increase in apoptosis,whereas osteoblast and control VSMCs viability remained unchanged. Third, osteoblasts expressed high levels ofalkaline phosphatase (TNAP) activity and TNAP inhibition reduced bone formation by to 90%. TNAP activity incalcifying VSMCs wasâŒ100-fold lower than that of bone-forming osteoblasts and cultures treated withÎČ-gly-cerophosphate, a TNAP substrate, did not calcify. Furthermore, TNAP inhibition had no effect on VSMC calci-fication. Although, VSMC calcification was associated with increased mRNA expression of osteoblast-relatedgenes (e.g. Runx2, osterix, osteocalcin, osteopontin), the relative expression of these genes was up to 40-foldlower in calcifying VSMCs versus bone-forming osteoblasts. In summary, calcifying VSMCsin vitrodisplay somelimited osteoblast-like characteristics but also differ in several key respects: 1) their inability to form collagen-containing bone; 2) their lack of reliance on TNAP to promote mineral deposition; and, 3) the deleterious effectof calcification on their viability.Peer reviewedFinal Published versio
Imaging the Sunyaev-Zel'dovich Effect
We report on results of interferometric imaging of the Sunyaev-Zel'dovich
Effect (SZE) with the OVRO and BIMA mm-arrays. Using low-noise cm-wave
receivers on the arrays, we have obtained high quality images for 27 distant
galaxy clusters. We review the use of the SZE as a cosmological tool. Gas mass
fractions derived from the SZE data are given for 18 of the clusters, as well
as the implied constraint on the matter density of the universe, . We
find . A best guess for the matter
density obtained by assuming a reasonable value for the Hubble constant and
also by attempting to account for the baryons contained in the galaxies as well
as those lost during the cluster formation process gives .
We also give preliminary results for the Hubble constant. Lastly, the power for
investigating the high redshift universe with a non-targeted high sensitivity
SZE survey is discussed and an interferometric survey is proposed.Comment: 14 pages, 7 figures, latex, contribution to Nobel Symposium "Particle
Physics and the Universe" to appear in Physica Scripta and World Scientific,
eds L. Bergstrom, P. Carlson and C. Fransso
Investigating the intrinsic noise limit of Dayem bridge NanoSQUIDs
NanoSQUIDs made from Nb thin films have been produced with nanometre loop sizes down to 200 nm, using weak-link junctions with dimensions less than 60 nm. These composite (W/Nb) single layer thin film devices, patterned by FIB milling, show extremely good low-noise performance âŒ170 nΊ0 at temperatures between 5 and 8.5 K and can operate in rather high magnetic fields (at least up to 1 T). The devices produced so far have a limited operating temperature range, typically only 1â2 K. We have the goal of achieving operation at 4.2 K, to be compatible with the best SQUID series array (SSA) preamplifier available. Using the SSA to readout the nanoSQUIDs provides us with a means of investigating the intrinsic noise of the former. In this paper we report improved white noise levels of these nanoSQUIDs, enabling potential detection of a single electronic spin flip in a 1-Hz bandwidth. At low frequencies the noise performance is already limited by SSA preamplifier noise
A 40th deg and order gravitational field model for Mars
Understanding the origin and evolution of major photographic features on Mars, such as the hemispheric dichotomy and Tharsis rise, will require improved resolution of that planet's gravitational and topographic fields. The highest resolution gravity model for Mars published to date was derived from Doppler tracking data from the Mariner 9 and Viking 1 and 2 spacecraft, and is of 18th degree and order. That field has a maximum spatial resolution of approx. 600 km, which is comparable to that of the best topographic model. The resolution of previous gravity models was limited not by data density, but rather by the computational resources available at the time. Because this restriction is no longer a limitation, the Viking and Mariner data sets were reanalyzed and a gravitational field was derived complete to the 40th degree and order with a corresponding maximum spatial resolution of 300 km where the data permit
- âŠ