10 research outputs found

    Cutaneous effects of in utero and lactational exposure of C57BL/6J mice to 2,3,7,8-tetrachlorodibenzo-p-dioxin

    No full text
    To determine the cutaneous effects of in utero and lactational exposure to the AHR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), pregnant C57BL/6J mice were exposed by gavage to a vehicle or 5 _g TCDD/kg body weight at embryonic day 12 and epidermal barrier formation and function were studied in their offspring from postnatal day 1 (P1) through adulthood. TCDDexposed pups were born with acanthosis. This effect was AHR-dependent and subsided by P6 with no evidence of subsequent inflammatory dermatitis. The challenge of adult mice with MC903 showed similar inflammatory responses in control and treated animals, indicating no long-term immunosuppression to this chemical. Chloracne-like sebaceous gland hypoplasia and cyst formation were observed in TCDD-exposed P21 mice, with concomitant microbiome dysbiosis. These effects were reversed by P35. CYP1A1 and CYP1B1 expression in the skin was increased in the exposed mice until P21, then declined. Both CYP proteins co-localized with LRIG1-expressing progenitor cells at the infundibulum. CYP1B1 protein also co-localized with a second stem cell niche in the isthmus. These results indicate that this exposure to TCDD causes a chloracne-like effect without inflammation. Transient activation of the AhR, due to the shorter half-life of TCDD in mice, likely contributes to the reversibility of these effects

    Voxel-based morphometry and arterial spin labeling fMRI reveal neuropathic and neuroplastic features of brain processing of itch in end-stage renal disease

    No full text
    Pruritus of end-stage renal disease (ESRD) is a multifactorial symptom of complex etiology not yet fully understood. In this study we have investigated the cerebral perfusion patterns at rest in ESRD patients on hemodialysis, compared with those in healthy volunteers. We have also studied the brain responses evoked by experimental itch induction in ESRD, after stimulating the two distinct histamine and cowhage itch pathways, and compared them with the responses evoked in healthy volunteers. To identify potential structural alterations in ESRD patients compared with a group of age-matched healthy volunteers, we calculated the density of gray matter for the entire brain using a voxel-based morphometric analysis. Our results indicated that gray matter density was significantly reduced in ESRD patients in the frontal, parietal, temporal, and occipital cortices, as well as in the S1, precuneus, and insula, whereas the brain stem, hippocampus, amygdala, midcingulate cortex, and nucleus accumbens displayed an increased gray matter density. Functionally, we found a significantly higher brain perfusion at baseline associated with ESRD pruritus in the anterior cingulate, insula, claustrum, hippocampus, and nucleus accumbens. The brain responses evoked by cowhage itch, which are mediated by protease-activated receptors (PAR2), displayed significant differences compared with responses in healthy individuals and were correlated with perceived itch intensity in a dual, complex manner. The inverse correlations in particular suggested that a negative feedback mechanism modulated itch intensity, when elicited in a preexistent chronic itch background

    17,20S(OH)2pD Can Prevent the Development of Skin Fibrosis in the Bleomycin-Induced Scleroderma Mouse Model

    No full text
    Systemic sclerosis (SSc; scleroderma) is a chronic fibrotic disease involving TGF-β1. Low serum vitamin D (vit D) correlates with the degree of fibrosis and expression of TGF-β1. This study was designed to determine whether the noncalcemic vit D analog, 17,20S(OH)2pD, suppresses fibrosis and mediators of the TGF-β1 pathway in the bleomycin (BLM) model of fibrosis. Fibrosis was induced into the skin of female C57BL/6 mice by repeated injections of BLM (50 μg/100 μL) subcutaneously. Mice received daily oral gavage with either vehicle (propylene glycol) or 17,20S(OH)2pD using 5, 15, or 30 μg/kg for 21 days. The injected skin was biopsied; analyzed histologically; examined for total collagen by Sircol; and examined for mRNA expression of MMP-13, BMP-7, MCP-1, Gli1, and Gli2 by TR-PCR. Spleen was analyzed for lymphocytes using flow cytometry. Serum was analyzed for cytokines using a multiplexed ELISA. Results showed that all three doses of 17,20S(OH)2pD suppressed net total collagen production, dermal thickness, and total collagen content in the BLM fibrosis model. 17,20S(OH)2pD also increased MMP-13 expression, decreased MCP-1 and Gli-2 expression in vivo, and suppressed serum levels of IL-13, TNF-α, IL-6, IL-10, IL-17, and IL-12p70. In summary, 17,20S(OH)2pD modulates the mediators of fibrosis in vivo and suppresses total collagen production and dermal thickness. This antifibrotic property of 17,20S(OH)2pD offers new therapeutic approaches for fibrotic disorders
    corecore