182 research outputs found

    Neuropeptides Exert Direct Effects on Rat Thymic Epithelial Cells in Culture

    Get PDF
    To determine if major thymic neuropeptides and neurotransmitters can directly influence the functional activity of cultured rat thymic epithelium, neuropeptides and neurotransmitters were applied, and intercellular communication, proliferation, and thymulin secretion assessed. After injections of a mixture of lucifer yellow dextran (too large to pass gap junctions) and cascade blue (which does) into single cells, some neuropeptides decrease dye coupling: 0.1 mM GABA (P < 0.0001), 100 nM NPY (P < 0.0001), 100 nM VIP (P < 0.001), 100 nM CGRP (P < 0.001), 100 nM SP (P < 0.01), and 0.1 mM histamine (P < 0.01), whereas 0.1 mM 5-HT, mM acetylcholine, and 1 μM isoproterenol (β-adrenergic agonist) had no effect. Proliferation (incorporation of tritiated thymidine) was increased by CGRP (P = 0.004) and histamine (P < 0.02), but decreased by isoproterenol (P = 0.002), 5-HT (P = 0.003), and acetylcholine (P < 0.05). The percentage of multinucleate cells was decreased after isoproterenol (2.5%), and increased after 5-HT (21.3%), GABA (15%), and histamine (15.1%). Compared to controls, thymulin in the supernatant was decreased after challenge with acetylcholine (52%), isoproterenol (71%), 5-HT (73%), and histamine (84%). This study demonstrates direct effects of neuropeptides and neurotransmitters on functional aspects of cultured thymic epithelial cells

    Proton nuclear magnetic resonance spectroscopic detection of oligomannosidic n glycans in alpha-mannosidosis: a method of monitoring treatment

    Get PDF
    In Alpha-mannosidosis (MIM 248500) the patients accumulate mainly unbranched oligosaccharide chains in the lysosomes in all body tissues, including the brain. With ensuing therapeutic modalities in man (BMT and ERT) non-invasive methods of monitoring the effect of treatment are needed. Paramount is the possible effect of the treatment on the brain, since this organ is regarded as difficult to reach because of the blood-brain barrier. We therefore performed proton nuclear magnetic resonance spectroscopy (MRS) of the brain in two untreated patients, and a 16-year-old patient treated with BMT at the age of 10 to assess whether this non-invasive method could be applied in the monitoring of the accumulation of abnormal chemicals in the brain of patients. We found an abnormal peak that was not present in the treated patient. A similar pattern was also found in MRS of urine from patients, reflecting the concentration of oligosaccharides in serum and tissues. We therefore conclude that MRS can be a useful method to monitor the effect of treatment for Alpha-Mannosidosis

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Performance and Operation of the CMS Electromagnetic Calorimeter

    Get PDF
    The operation and general performance of the CMS electromagnetic calorimeter using cosmic-ray muons are described. These muons were recorded after the closure of the CMS detector in late 2008. The calorimeter is made of lead tungstate crystals and the overall status of the 75848 channels corresponding to the barrel and endcap detectors is reported. The stability of crucial operational parameters, such as high voltage, temperature and electronic noise, is summarised and the performance of the light monitoring system is presented

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe

    Calibration of the CMS Drift Tube Chambers and Measurement of the Drift Velocity with Cosmic Rays

    Get PDF
    Peer reviewe

    Commissioning and performance of the CMS silicon strip tracker with cosmic ray muons

    Get PDF
    This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPDuring autumn 2008, the Silicon Strip Tracker was operated with the full CMS experiment in a comprehensive test, in the presence of the 3.8 T magnetic field produced by the CMS superconducting solenoid. Cosmic ray muons were detected in the muon chambers and used to trigger the readout of all CMS sub-detectors. About 15 million events with a muon in the tracker were collected. The efficiency of hit and track reconstruction were measured to be higher than 99% and consistent with expectations from Monte Carlo simulation. This article details the commissioning and performance of the Silicon Strip Tracker with cosmic ray muons.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Alignment of the CMS silicon tracker during commissioning with cosmic rays

    Get PDF
    The CMS silicon tracker, consisting of 1440 silicon pixel and 15 148 silicon strip detector modules, has been aligned using more than three million cosmic ray charged particles, with additional information from optical surveys. The positions of the modules were determined with respect to cosmic ray trajectories to an average precision of 3-4 microns RMS in the barrel and 3-14 microns RMS in the endcap in the most sensitive coordinate. The results have been validated by several studies, including laser beam cross-checks, track fit self-consistency, track residuals in overlapping module regions, and track parameter resolution, and are compared with predictions obtained from simulation. Correlated systematic effects have been investigated. The track parameter resolutions obtained with this alignment are close to the design performance
    corecore