96 research outputs found

    University of Utah Red Butte Creek Strategic Vision

    Get PDF
    reportA vision for Red Butte Creek at the University of Utah, developed by a RBC Strategic Vision Steering Committee led by Diane Pataki, Biology department

    The changing landscape : ecosystem responses to urbanization and pollution across climatic and societal gradients

    Get PDF
    Author Posting. © Ecological Society of America, 2008. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Frontiers in Ecology and the Environment 6 (2008): 264–272, doi:10.1890/070147.Urbanization, an important driver of climate change and pollution, alters both biotic and abiotic ecosystem properties within, surrounding, and even at great distances from urban areas. As a result, research challenges and environmental problems must be tackled at local, regional, and global scales. Ecosystem responses to land change are complex and interacting, occurring on all spatial and temporal scales as a consequence of connectivity of resources, energy, and information among social, physical, and biological systems. We propose six hypotheses about local to continental effects of urbanization and pollution, and an operational research approach to test them. This approach focuses on analysis of “megapolitan” areas that have emerged across North America, but also includes diverse wildland-to-urban gradients and spatially continuous coverage of land change. Concerted and coordinated monitoring of land change and accompanying ecosystem responses, coupled with simulation models, will permit robust forecasts of how land change and human settlement patterns will alter ecosystem services and resource utilization across the North American continent. This, in turn, can be applied globally.We thank the NSF LTER program for its support

    Trees Grow on Money: Urban Tree Canopy Cover and Environmental Justice

    Get PDF
    This study examines the distributional equity of urban tree canopy (UTC) cover for Baltimore, MD, Los Angeles, CA, New York, NY, Philadelphia, PA, Raleigh, NC, Sacramento, CA, and Washington, D.C. using high spatial resolution land cover data and census data. Data are analyzed at the Census Block Group levels using Spearman\u27s correlation, ordinary least squares regression (OLS), and a spatial autoregressive model (SAR). Across all cities there is a strong positive correlation between UTC cover and median household income. Negative correlations between race and UTC cover exist in bivariate models for some cities, but they are generally not observed using multivariate regressions that include additional variables on income, education, and housing age. SAR models result in higher r-square values compared to the OLS models across all cities, suggesting that spatial autocorrelation is an important feature of our data. Similarities among cities can be found based on shared characteristics of climate, race/ethnicity, and size. Our findings suggest that a suite of variables, including income, contribute to the distribution of UTC cover. These findings can help target simultaneous strategies for UTC goals and environmental justice concerns

    Protecting climate with forests

    Get PDF
    Policies for climate mitigation on land rarely acknowledge biophysical factors, such as reflectivity, evaporation, and surface roughness. Yet such factors can alter temperatures much more than carbon sequestration does, and often in a conflicting way. We outline a framework for examining biophysical factors in mitigation policies and provide some best-practice recommendations based on that framework. Tropical projects-avoided deforestation, forest restoration, and afforestation-provide the greatest climate value, because carbon storage and biophysics align to cool the Earth. In contrast, the climate benefits of carbon storage are often counteracted in boreal and other snow-covered regions, where darker trees trap more heat than snow does. Managers can increase the climate benefit of some forest projects by using more reflective and deciduous species and through urban forestry projects that reduce energy use. Ignoring biophysical interactions could result in millions of dollars being invested in some mitigation projects that provide little climate benefit or, worse, are counter-productive

    Integrating solutions to adapt cities for climate change

    Get PDF
    Record climate extremes are reducing urban liveability, compounding inequality, and threatening infrastructure. Adaptation measures that integrate technological, nature-based, and social solutions can provide multiple co-benefits to address complex socioecological issues in cities while increasing resilience to potential impacts. However, there remain many challenges to developing and implementing integrated solutions. In this Viewpoint, we consider the value of integrating across the three solution sets, the challenges and potential enablers for integrating solution sets, and present examples of challenges and adopted solutions in three cities with different urban contexts and climates (Freiburg, Germany; Durban, South Africa; and Singapore). We conclude with a discussion of research directions and provide a road map to identify the actions that enable successful implementation of integrated climate solutions. We highlight the need for more systematic research that targets enabling environments for integration; achieving integrated solutions in different contexts to avoid maladaptation; simultaneously improving liveability, sustainability, and equality; and replicating via transfer and scale-up of local solutions. Cities in systematically disadvantaged countries (sometimes referred to as the Global South) are central to future urban development and must be prioritised. Helping decision makers and communities understand the potential opportunities associated with integrated solutions for climate change will encourage urgent and deliberate strides towards adapting cities to the dynamic climate reality.Peer reviewe

    Homogenization of Plant Diversity, Composition, and Structure in North American Urban Yards

    Get PDF
    Urban ecosystems are widely hypothesized to be more ecologically homogeneous than natural ecosystems. We argue that urban plant communities assemble from a complex mix of horticultural and regional species pools, and evaluate the homogenization hypothesis by comparing cultivated and spontaneously occurring urban vegetation to natural area vegetation across seven major U.S. cities. There was limited support for homogenization of urban diversity, as the cultivated and spontaneous yard flora had greater numbers of species than natural areas, and cultivated phylogenetic diversity was also greater. However, urban yards showed evidence of homogenization of composition and structure. Yards were compositionally more similar across regions than were natural areas, and tree density was less variable in yards than in comparable natural areas. This homogenization of biodiversity likely reflects similar horticultural source pools, homeowner preferences, and management practices across U.S. cities

    Continental-scale homogenization of residential lawn plant communities

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Landscape and Urban Planning 165 (2017): 54-63, doi:10.1016/j.landurbplan.2017.05.004.Residential lawns are highly managed ecosystems that occur in urbanized landscapes across the United States. Because they are ubiquitous, lawns are good systems in which to study the potential homogenizing effects of urban land use and management together with the continental-scale effects of climate on ecosystem structure and functioning. We hypothesized that similar homeowner preferences and management in residential areas across the United States would lead to low plant species diversity in lawns and relatively homogeneous vegetation across broad geographical regions. We also hypothesized that lawn plant species richness would increase with regional temperature and precipitation due to the presence of spontaneous, weedy vegetation, but would decrease with household income and fertilizer use. To test these predictions, we compared plant species composition and richness in residential lawns in seven U.S. metropolitan regions. We also compared species composition in lawns with understory vegetation in minimally-managed reference areas in each city. As expected, the composition of cultivated turfgrasses was more similar among lawns than among reference areas, but this pattern also held among spontaneous species. Plant species richness and diversity varied more among lawns than among reference areas, and more diverse lawns occurred in metropolitan areas with higher precipitation. Native forb diversity increased with precipitation and decreased with income, driving overall lawn diversity trends with these predictors as well. Our results showed that both management and regional climate shaped lawn species composition, but the overall homogeneity of species regardless of regional context strongly suggested that management was a more important driver.This research was supported by the Macrosystems Biology Program in the Emerging Frontiers Division of the Biological Sciences Directorate at the National Science Foundation (NSF) under grants EF-1065548, 1065737, 1065740, 1065741, 1065772, 1065785, 1065831, and 121238320
    • …
    corecore