35 research outputs found
Chromosomal 3q Amplicon Encodes Essential Regulators of Secretory Vesicles That Drive Secretory Addiction in Cancer
Cancer cells exhibit heightened secretory states that drive tumor progression. Here, we identify a chromosome 3q amplicon that serves as a platform for secretory regulation in cancer. The 3q amplicon encodes multiple Golgi-resident proteins, including the scaffold Golgi integral membrane protein 4 (GOLIM4) and the ion channel ATPase Secretory Pathway Ca2+ Transporting 1 (ATP2C1). We show that GOLIM4 recruits ATP2C1 and Golgi phosphoprotein 3 (GOLPH3) to coordinate calcium-dependent cargo loading and Golgi membrane bending and vesicle scission. GOLIM4 depletion disrupts the protein complex, resulting in a secretory blockade that inhibits the progression of 3q-amplified malignancies. In addition to its role as a scaffold, GOLIM4 maintains intracellular manganese (Mn) homeostasis by binding excess Mn in the Golgi lumen, which initiates the routing of Mn-bound GOLIM4 to lysosomes for degradation. We show that Mn treatment inhibits the progression of multiple types of 3q-amplified malignancies by degrading GOLIM4, resulting in a secretory blockade that interrupts pro-survival autocrine loops and attenuates pro-metastatic processes in the tumor microenvironment. Potentially underlying the selective activity of Mn against 3q-amplified malignancies, ATP2C1 co-amplification increases Mn influx into the Golgi lumen, resulting in a more rapid degradation of GOLIM4. These findings show that functional cooperativity between co-amplified genes underlies heightened secretion and a targetable secretory addiction in 3q-amplified malignancies
Taxane-Platin-Resistant Lung Cancers Co-develop Hypersensitivity to JumonjiC Demethylase Inhibitors
Although non-small cell lung cancer (NSCLC) patients benefit from standard taxane-platin chemotherapy, many relapse, developing drug resistance. We established preclinical taxane-platin-chemoresistance models and identified a 35-gene resistance signature, which was associated with poor recurrence-free survival in neoadjuvant-treated NSCLC patients and included upregulation of the JumonjiC lysine demethylase KDM3B. In fact, multi-drug-resistant cells progressively increased the expression of many JumonjiC demethylases, had altered histone methylation, and, importantly, showed hypersensitivity to JumonjiC inhibitors in vitro and in vivo. Increasing taxane-platin resistance in progressive cell line series was accompanied by progressive sensitization to JIB-04 and GSK-J4. These JumonjiC inhibitors partly reversed deregulated transcriptional programs, prevented the emergence of drug-tolerant colonies from chemo-naive cells, and synergized with standard chemotherapy in vitro and in vivo. Our findings reveal JumonjiC inhibitors as promising therapies for targeting taxane-platin-chemoresistant NSCLCs.Fil: Dalvi, Maithili P.. University of Texas. Southwestern Medical Center; Estados UnidosFil: Wang, Lei. University of Texas. Southwestern Medical Center; Estados UnidosFil: Zhong, Rui. University of Texas. Southwestern Medical Center; Estados UnidosFil: Kollipara, Rahul K.. University of Texas. Southwestern Medical Center; Estados UnidosFil: Park, Hyunsil. University of Texas. Southwestern Medical Center; Estados UnidosFil: Bayo Fina, Juan Miguel. University of Texas. Southwestern Medical Center; Estados Unidos. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; ArgentinaFil: Yenerall, Paul. University of Texas. Southwestern Medical Center; Estados UnidosFil: Zhou, Yunyun. University of Texas. Southwestern Medical Center; Estados UnidosFil: Timmons, Brenda C.. University of Texas. Southwestern Medical Center; Estados UnidosFil: Rodriguez Canales, Jaime. University of Texas; Estados UnidosFil: Behrens, Carmen. Md Anderson Cancer Center; Estados UnidosFil: Mino, Barbara. University of Texas; Estados UnidosFil: Villalobos, Pamela. University of Texas; Estados UnidosFil: Parra, Edwin R.. University of Texas; Estados UnidosFil: Suraokar, Milind. University of Texas; Estados UnidosFil: Pataer, Apar. University of Texas; Estados UnidosFil: Swisher, Stephen G.. University of Texas; Estados UnidosFil: Kalhor, Neda. University of Texas; Estados UnidosFil: Bhanu, Natarajan V.. University of Pennsylvania; Estados UnidosFil: Garcia, Benjamin A.. University of Pennsylvania; Estados UnidosFil: Heymach, John V.. University of Texas; Estados UnidosFil: Coombes, Kevin. University of Texas; Estados UnidosFil: Xie, Yang. University of Texas. Southwestern Medical Center; Estados UnidosFil: Girard, Luc. University of Texas. Southwestern Medical Center; Estados UnidosFil: Gazdar, Adi F.. University of Texas. Southwestern Medical Center; Estados UnidosFil: Kittler, Ralf. University of Texas. Southwestern Medical Center; Estados UnidosFil: Wistuba, Ignacio I.. University of Texas; Estados UnidosFil: Minna, John D.. University of Texas. Southwestern Medical Center; Estados UnidosFil: Martinez, Elisabeth D.. University of Texas. Southwestern Medical Center; Estados Unido
Aberrant Expression of Proteins Involved in Signal Transduction and DNA Repair Pathways in Lung Cancer and Their Association with Clinical Parameters
Because cell signaling and cell metabolic pathways are executed through proteins, protein signatures in primary tumors are useful for identifying key nodes in signaling networks whose alteration is associated with malignancy and/or clinical outcomes. This study aimed to determine protein signatures in primary lung cancer tissues.We analyzed 126 proteins and/or protein phosphorylation sites in case-matched normal and tumor samples from 101 lung cancer patients with reverse-phase protein array (RPPA) assay. The results showed that 18 molecules were significantly different (p<0.05) by at least 30% between normal and tumor tissues. Most of those molecules play roles in cell proliferation, DNA repair, signal transduction and lipid metabolism, or function as cell surface/matrix proteins. We also validated RPPA results by Western blot and/or immunohistochemical analyses for some of those molecules. Statistical analyses showed that Ku80 levels were significantly higher in tumors of nonsmokers than in those of smokers. Cyclin B1 levels were significantly overexpressed in poorly differentiated tumors while Cox2 levels were significantly overexpressed in neuroendocrinal tumors. A high level of Stat5 is associated with favorable survival outcome for patients treated with surgery.Our results revealed that some molecules involved in DNA damage/repair, signal transductions, lipid metabolism, and cell proliferation were drastically aberrant in lung cancer tissues, and Stat5 may serve a molecular marker for prognosis of lung cancers
The Chemotherapeutic Drug 5-Fluorouracil Promotes PKR-Mediated Apoptosis in a p53- Independent Manner in Colon and Breast Cancer Cells
The chemotherapeutic drug 5-FU is widely used in the treatment of a range of cancers, but resistance to the drug remains a major clinical problem. Since defects in the mediators of apoptosis may account for chemo-resistance, the identification of new targets involved in 5-FU-induced apoptosis is of main clinical interest. We have identified the ds-RNA-dependent protein kinase (PKR) as a key molecular target of 5-FU involved in apoptosis induction in human colon and breast cancer cell lines. PKR distribution and activation, apoptosis induction and cytotoxic effects were analyzed during 5-FU and 5-FU/IFNα treatment in several colon and breast cancer cell lines with different p53 status. PKR protein was activated by 5-FU treatment in a p53-independent manner, inducing phosphorylation of the protein synthesis translation initiation factor eIF-2α and cell death by apoptosis. Furthermore, PKR interference promoted a decreased response to 5-FU treatment and those cells were not affected by the synergistic antitumor activity of 5-FU/IFNα combination. These results, taken together, provide evidence that PKR is a key molecular target of 5-FU with potential relevance in the clinical use of this drug
Neoadjuvant Chemotherapy Plus Nivolumab With or Without Ipilimumab in Operable Non-small Cell Lung Cancer: The Phase 2 Platform NEOSTAR Trial
Neoadjuvant ipilimumab + nivolumab (Ipi+Nivo) and nivolumab + chemotherapy (Nivo+CT) induce greater pathologic response rates than CT alone in patients with operable non-small cell lung cancer (NSCLC). The impact of adding ipilimumab to neoadjuvant Nivo+CT is unknown. Here we report the results and correlates of two arms of the phase 2 platform NEOSTAR trial testing neoadjuvant Nivo+CT and Ipi+Nivo+CT with major pathologic response (MPR) as the primary endpoint. MPR rates were 32.1% (7/22, 80% confidence interval (CI) 18.7–43.1%) in the Nivo+CT arm and 50% (11/22, 80% CI 34.6–61.1%) in the Ipi+Nivo+CT arm; the primary endpoint was met in both arms. In patients without known tumor EGFR/ALK alterations, MPR rates were 41.2% (7/17) and 62.5% (10/16) in the Nivo+CT and Ipi+Nivo+CT groups, respectively. No new safety signals were observed in either arm. Single-cell sequencing and multi-platform immune profiling (exploratory endpoints) underscored immune cell populations and phenotypes, including effector memory CD8+ T, B and myeloid cells and markers of tertiary lymphoid structures, that were preferentially increased in the Ipi+Nivo+CT cohort. Baseline fecal microbiota in patients with MPR were enriched with beneficial taxa, such as Akkermansia, and displayed reduced abundance of pro-inflammatory and pathogenic microbes. Neoadjuvant Ipi+Nivo+CT enhances pathologic responses and warrants further study in operable NSCLC. (ClinicalTrials.gov registration: NCT03158129.
The Double-stranded RNA–dependent Protein Kinase Differentially Regulates Insulin Receptor Substrates 1 and 2 in HepG2 Cells
The RNA-dependent protein kinase (PKR), initially known as a virus infection response protein, is found to differentially regulate two major players in the insulin signaling pathway, IRS1 and IRS2. PKR up-regulates the inhibitory phosphorylation of IRS1 and the expression of IRS2 at the transcriptional level