4 research outputs found

    Marine habitat preferences of marbled murrelets in Haida Gwaii, BC

    Get PDF
    Effective spatial planning for seabirds depends on understanding what influences foraging habitat choices. I used a long running at-sea survey dataset (1997-2018) to develop a baseline understanding of marine habitat preferences of Marbled murrelets (Brachyramphus marmoratus) in Haida Gwaii, British Columbia, Canada. Persistence hotspot mapping showcased how distributions have remained similar over time. Murrelet usage was positively associated with being closer to streams, shallower waters, higher proportions of sandy sediment and closer proximity to abundant potential nesting habitat. Additional surveys conducted in 2018 and 2019 identified stratified water as a dynamic variable that positively influenced counts. Finally, an experiment utilizing avian deterrent kites showed that a lower daily proportion of murrelets were counted in locations adjacent to kites when they were flying than when they were not. Overall, my study shows that static variables are primary influencers of Marbled murrelet marine distribution, but dynamic variables such as thermal mixing and predator occurrence also play roles

    Evaluation of an automated magnetic bead-based DNA extraction and real-time PCR in fecal samples as a pre-screening test for detection of Echinococcus multilocularis and Echinococcus canadensis in coyotes

    No full text
    Efficient and sensitive diagnostic tools are essential for the study of the eco-epidemiology of Echinococcus species. We evaluated an automated magnetic bead-based DNA extraction commercial kit followed by qPCR (MB-qPCR), for the detection of Echinococcus multilocularis and Echinococcus canadensis in coyote (Canis latrans) fecal samples. The diagnostic sensitivity was determined by validating the method against the scraping, filtration, and counting technique (SFCT) for samples collected in Canada. From the 60 samples tested, 27 out of 31 SFCT positives samples for Echinococcus cestodes were positive in the MB-qPCR for E. multilocularis, with a sensitivity of 87.1% (95% CI 70.2 to 96.4%). Two samples were also positive for E. canadensis in the MB-qPCR and confirmed by morphological identification of adult worms. The agreement of the MB-qPCR and the SFCT was statistically significant with a kappa value of 0.67 (95% CI 0.48–0.85; p value < 0.001). The magnetic bead-based DNA extraction followed by qPCR proved to have a sensitivity comparable to the SFCT to detect E. multilocularis. Although the diagnostic sensitivity for E. canadensis was not estimated, MB-qPCR identified E. canadensis cases previously overlooked when using SFCT. We propose a combination of molecular and morphological identification using the MB-qPCR and the SFCT to detect both parasites, allowing for a more efficient large-scale surveillance, and detecting co-infections of Echinococcus species that can be difficult to identify when only based on morphology

    Detecting co-infections of Echinococcus multilocularis and Echinococcus canadensis in coyotes and red foxes in Alberta, Canada using real-time PCR

    No full text
    The continued monitoring of Echinococcus species in intermediate and definitive hosts is essential to understand the eco-epidemiology of these parasites, as well to assess their potential impact on public health. In Canada, co-infections of Echinococcus canadensis and Echinococcus multilocularis based on genetic characterization have been recently reported in wolves, but not yet in other possible hosts such as coyotes and foxes. In this study, we aimed to develop a quantitative real-time PCR assay to detect E. multilocularis and E. canadensis and estimate the occurrence of co-infections while inferring about the relative abundance of the two parasites within hosts. We tested DNA extracted from aliquots of Echinococcus spp. specimens collected from intestinal tracts of 24 coyote and 16 fox carcasses from Alberta, Canada. We found evidence of co-infections of E. multilocularis and E. canadensis in 11 out of 40 (27%) samples, with 8 out of 24 (33%) in coyote samples and 3 out of 16 (19%) in red fox samples. DNA concentrations were estimated in three samples with Cq values within the range of the standard curve for both parasites; two of them presented higher DNA concentrations of E. multilocularis than E. canadensis. The use of qPCR aided detection of co-infections when morphological discrimination was difficult and quantification of DNA for samples within the standard curve. This is the first molecularly confirmed record of E. canadensis in coyotes and the first evidence of co-infections of E. multilocularis and E. canadensis in coyotes and red foxes
    corecore