8,202 research outputs found

    Generating functionals, consistency, and uniqueness in the integral equation theory of liquids

    Full text link
    We discuss and illustrate through numerical examples the relations between generating functionals, thermodynamic consistency (in particular the virial-free energy one), and uniqueness of the solution, in the integral equation theory of liquids. We propose a new approach for deriving closures automatically satisfying such characteristics. Results from a first exploration of this program are presented and discussed.Comment: 27 pages, 5 figure

    Advanced radar absorbing ceramic-based materials for multifunctional applications in space environment

    Get PDF
    In this review, some results of the experimental activity carried out by the authors on advanced composite materials for space applications are reported. Composites are widely employed in the aerospace industry thanks to their lightweight and advanced thermo-mechanical and electrical properties. A critical issue to tackle using engineered materials for space activities is providing two or more specific functionalities by means of single items/components. In this scenario, carbon-based composites are believed to be ideal candidates for the forthcoming development of aerospace research and space missions, since a widespread variety of multi-functional structures are allowed by employing these materials. The research results described here suggest that hybrid ceramic/polymeric structures could be employed as spacecraft-specific subsystems in order to ensure extreme temperature withstanding and electromagnetic shielding behavior simultaneously. The morphological and thermo-mechanical analysis of carbon/carbon (C/C) three-dimensional (3D) shell prototypes is reported; then, the microwave characterization of multilayered carbon-filled micro-/nano-composite panels is described. Finally, the possibility of combining the C/C bulk with a carbon-reinforced skin in a synergic arrangement is discussed, with the aid of numerical and experimental analyses

    Thermal neutron captures on dd and 3^3He

    Full text link
    We report on a study of the ndnd and n\,^3He radiative captures at thermal neutron energies, using wave functions obtained from either chiral or conventional two- and three-nucleon realistic potentials with the hyperspherical harmonics method, and electromagnetic currents derived in chiral effective field theory up to one loop. The predicted ndnd and n\,^3He cross sections are in good agreement with data, but exhibit a significant dependence on the input Hamiltonian. A comparison is also made between these and new results for the ndnd and n\,^3He cross sections obtained in the conventional framework for both potentials and currents.Comment: 4 pages, 4 eps figures; references added; corrections to text and abstract as suggested by referee adde

    Import substitution and implicit taxation of agriculture in Brazil.

    Get PDF
    The industrialization that Brazil experienced prior to World War II was not induced by the government It had its origin in the relative profitability of the agricultura1 and industrial sectors, which favored a shift in resources to the indup trial sector. During the period from the end of World War II until the early sixties, a deliberate import-substitution policy was pursued. The factors that gave rise to that policy were the diff iculty that the country encountered in foreign trade during. the Depression and the two world wars, the influente of the Prebish thesis, and the dominance of two sector models (Rannis & Fei 1961 and Jorgenson 1969) as the basis for development policies

    Local chiral interactions and magnetic structure of few-nucleon systems

    Full text link
    The magnetic form factors of 2^2H, 3^3H, and 3^3He, deuteron photodisintegration cross sections at low energies, and deuteron threshold electrodisintegration cross sections at backward angles in a wide range of momentum transfers, are calculated with the chiral two-nucleon (and three-nucleon) interactions including Δ\Delta intermediate states that have recently been constructed in configuration space. The A A\,= \,3 wave functions are obtained from hyperspherical-harmonics solutions of the Schr\"odinger equation. The electromagnetic current includes one- and two-body terms, the latter induced by one- and two-pion exchange (OPE and TPE, respectively) mechanisms and contact interactions. The contributions associated with Δ\Delta intermediate states are only retained at the OPE level, and are neglected in TPE loop (tree-level) corrections to two-body (three-body) current operators. Expressions for these currents are derived and regularized in configuration space for consistency with the interactions. The low-energy constants that enter the contact few-nucleon systems. The predicted form factors and deuteron electrodisintegration cross section are in excellent agreement with experiment for momentum transfers up to 2--3 fm−1^{-1}. However, the experimental values for the deuteron photodisintegration cross section are consistently underestimated by theory, unless use is made of the Siegert form of the electric dipole transition operator. A complete analysis of the results is provided, including the clarification of the origin of the aforementioned discrepancy.Comment: 24 pages, 13 figure

    Finite-size effects and collective vibrations in the inner crust of neutron stars

    Full text link
    We study the linear response of the inner crust of neutron stars within the Random Phase Approximation, employing a Skyrme-type interaction as effective interaction. We adopt the Wigner-Seitz approximation, and consider a single unit cell of the Coulomb lattice which constitutes the inner crust, with a nucleus at its center, surrounded by a sea of free neutrons. With the use of an appropriate operator, it is possible to analyze in detail the properties of the vibrations of the surface of the nucleus and their interaction with the modes of the sea of free neutrons, and to investigate the role of shell effects and of resonant states

    Reforming the brazilian agricultural research system.

    Get PDF
    bitstream/item/158310/1/Reforming-the-brazilian.pd

    Dynamic phase coexistence in glass-forming liquids

    Get PDF
    One of the most controversial hypotheses for explaining the heterogeneous dynamics of glasses postulates the temporary coexistence of two phases characterized by a high and by a low diffusivity. In this scenario, two phases with different diffusivities coexist for a time of the order of the relaxation time and mix afterwards. Unfortunately, it is difficult to measure the single-particle diffusivities to test this hypothesis. Indeed, although the non-Gaussian shape of the van-Hove distribution suggests the transient existence of a diffusivity distribution, it is not possible to infer from this quantity whether two or more dynamical phases coexist. Here we provide the first direct observation of the dynamical coexistence of two phases with different diffusivities, by showing that in the deeply supercooled regime the distribution of the single-particle diffusivities acquires a transient bimodal shape. We relate this distribution to the heterogeneity of the dynamics and to the breakdown of the Stokes-Einstein relation, and we show that the coexistence of two dynamical phases occurs up to a timescale growing faster than the relaxation time on cooling, for some of the considered models. Our work offers a basis for rationalizing the dynamics of supercooled liquids and for relating their structural and dynamical properties.Comment: 12 pages, 7 figure
    • …
    corecore